ارزیابی مدل برف واسنجی شده طرحواره سطح NOAH-MP جفت شده در مدل WRF با تصاویر سنجنده مودیس در نواحی با ویژگی‌های متفاوت سطح

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

چکیده

پوشش برف اثر قابل توجهی در کشاورزی، منابع آب و اقلیم دارد و به دلیل تغییرات شدید مکانی و زمانی از مهم‌ترین مؤلفه‌ها در طرحواره‌های سطح است. مدل برف طرحواره سطح NOAHMP جفت شده در مدل WRF با فاکتور ذوب برف واسنجی شده با تصاویر روزانه کسر پوشش برف سنجنده مودیس ماهواره ترا در بارش‌های سنگین برف در سال‌های 2013 و 2014 ارزیابی شده است. منطقه مورد مطالعه که شامل استان‌های غربی (همدان و کردستان) و استان‌های شمالی (اردبیل، گیلان و مازندران) است به نواحی جنگلی، مرتع، پست و کم‌ارتفاع و کوهستانی دارای شیب کم و زیاد تقسیم شد. مدل ضعیف‌ترین (بهترین) عملکرد در برآورد کسر پوشش برف (کمینه دمای هوا) را با بیش‌ترین (کم‌ترین) میانگین مربعات خطاهای نرمال شده و انحراف معیار نرمال شده بیش‌تر از (نزدیک به) یک دارد. مدل عدم قطعیت بالایی در برآورد کسر پوشش برف و ارتفاع برف در نواحی دارای توپوگرافی پیچیده (با ضریب کارایی بسیار کوچک مثبت، 01/0) و نواحی دارای ناهمگنی سطح (نواحی مرتع و جنگلی با ضرایب کارایی منفی و خطاهای بزرگ) دارد. بهترین عملکرد مدل در برآورد کسر پوشش برف و ارتفاع برف در نواحی پست و کم ارتفاع با بالاترین ضرایب کارایی (به ترتیب 71/0 و 40/0) و کوچک‌ترین میانگین مطلق خطا (به ترتیب 8 و cm4/6) است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the calibrated snow model of the NOAH-MP land surface scheme coupled in the WRF using MODIS images in areas with different land-surface features

نویسندگان [English]

  • Mehraneh Khodamoradpour 1
  • Parviz Irannejad 2
1 Assistant Professor of the Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Associate Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
چکیده [English]

Snow cover has a significant effect on agriculture, water resources and climate, and it is one of the most important components of land-surface schemes due to its high spatial and temporal variations. The snow model of the NOAHMP land-surface scheme coupled in the WRF model is evaluated with the calibrated snow melting factor by the Tera satellite’s daily MODIS images of snow cover fraction during the heavy snowfalls in 2013 and 2014. The study area including western provinces (Hamedan and Kurdistan) and northern provinces (Ardebil, Gilan, and Mazandaran) of Iran is divided into forests, rangelands, lowlands, and mountainous areas with low and high slopes. The model has the weakest (best) performance in estimating snow cover fraction (minimum air temperature) with highest (lowest) normalized root mean square error and normalized standard deviation greater than (close to) one. The model has high uncertainty in estimating the snow cover fraction and snow depth in the regions with complex topography (with a very small positive efficiency coefficient, 0.01) and heterogeneous areas (rangelands and forests with a negative efficiency coefficient and large errors). The model has the best performance in estimating the snow cover fraction and snow depth in the lowlands with the highest efficiency coefficients (0.71 and 0.40, respectively) and the lowest mean absolute error (8 and 6.4 cm respectively).

کلیدواژه‌ها [English]

  • NOAHMP Land Surface Scheme
  • Snow Cover Fraction
  • WRF Model
  • MODIS Images
Anderson, E.A. 1976. A point of energy and mass balance model of snow cover: NOAA Technical Report NWS, 19: 1-150.
Ball, J.T., Woodrow, I.E., Berry, J.A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in photosynthesis research (pp. 221-224). Springer Netherlands.China.
Bonan, G.B. 1996. Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and users guide. Technical note (No. PB--97-131494/XAB; NCAR/TN--417-STR). National Center for Atmospheric Research, Boulder, CO (United States): Climate and Global Dynamics Division.
Bowling, L.C., Lettenmaier, D.P., Nijssen, B., Graham, L.P., Clark, D.B., El Maayar, M., Essery, R., Goers, S., Gusev, Y.M., Habets, F., Van Den Hurk, B. 2003. Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2 (e): 1: Experiment description and summary intercomparisons. Global Planetary Change, 38(1): 1-30.
Brutel-Vuilmet, C., Ménégoz, M., Krinner, G. 2013. An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. The Cryosphere, 7(1): 67-80.
Chen, F. and Dudhia, J. 2001. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129)4): 569-585.
Chen, F., Liu, C., Dudhia, J., Chen, M. 2014. A sensitivity study of high-resolution regional climate simulations to three land surface models over the western United States. Journal of Geophysical Research: Atmospheres, 119: 7271–7291.
Derksen, C., Brown, R. 2012. Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophysical Research Letter, 39(19): 1-14.
Dickinson, R.E., Kennedy, P.J., Henderson-Sellers, A. 1993. Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. National Center for Atmospheric Research,  Climate  and  Global   DynamicsDivision.
Gao, H., Jia, G. 2013. Assessing disagreement and tolerance of misclassification of satellite- derived land cover products used in WRF Model applications. Advances in Atmospheric Sciences, 30(1): 125-141.‏
Huang, X., Liang, T., Zhang, X., Guo, Z. 2011. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang. International Journal of Remote Sensing, 32: 133–152.
Irannejad, P., Shao, Y. 1998. Description and validation of the Atmosphere-Land-Surface Interaction Scheme (ALSIS) with HAPEX and Cabauw data. Global Planetary Change, 19: 87-114.
Maurer, E.P., Rhoads, J.D., Dubayah, R.O., Lettenmaier, D.P. 2003. Evaluation of the snow-covered area data product from MODIS. Hydrological Process, 17: 59–71.
Minder, J.R., Letcher, T.W., Skiles, S.M. 2016. An evaluation of high resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow albedo feedback. Journal of Geophysical Research: Atmospheres, 121(15): 9069-9088.
Nash, J.E., Sutcliffe, J.V. 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of hydrology, 10(3): 282-290.
Niu, G.Y., Yang, Z.L. 2004. Effects of vegetation canopy processes on snow surface energy and mass balances. Journal of Geophysical Research: Atmospheres, 109(D23): 1-15.
Niu, G.Y., Yang, Z.L., Dickinson, R.E., Gulden, L.E. 2005. A simple TOPMODEL based runoff parameterization (SIMTOP) for use in global climate models. Journal of Geophysical Research: Atmospheres, 110(D21).
Niu, G.Y., Yang, Z.L., Dickinson, R.E., Gulden, L.E., Su, H. 2007. Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. Journal of Geophysical Research: Atmospheres, 112(D7).
Niu, G.Y., Yang, Z.L., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E. and Tewari, M. 2011. The community Noah land surface model with multiparameterization options (Noah‐MP). Model description and evaluation with local‐scale measurements. Journal of Geophysical Research: Atmospheres, 116(D12).
Roesch, A., Wild, M., Gilgen, H., Ohmura, A. 2001. A new snow cover fraction parametrizatio for the ECHAM4 GCM. Climate Dynamic, 17(12): 933-946.
Skamarock, W.C., Klemp, J.B., Dudhia, J. 2001. Prototypes for the WRF (Weather Research and Forecasting) model. In Preprints, Ninth Conf. Mesoscale Processes, J11–J15, American Meteorolgy Society, Fort Lauderdale, FL.
Taylor, K.E. 2001. Summarizing multiple aspects of model performance in a   single   diagram. Journal of Geophysical Research: Atmospheres, 106(D7): 7183-7192.
Wrzesien, M.L., Pavelsky, T.M., Kapnick, S.B., Durand, M.T., Painter, T.H. 2015. Evaluation of snow cover fraction for regional climate simulations in the Sierra Nevada. International Journal of Climatology, 35(9): 2472- 2484.
Yang, Z.L., Dickinson, R.E., Robock, A., Vinnikov, K.Y. 1997. Validation of the snow submodel of the biosphere–atmosphere transfer scheme with Russian snow cover and meteorological observational data. Journal of Climate, 10(2): 353-373.
Zhang, T. 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 43(4).