تعیین متغیر‌های اقلیمی مؤثر بر عملکرد پسته با استفاده از الگوریتم C&R درخت تصمیم
20.1001.1.23453419.1400.9.1.6.3

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی کشاورزی دانشگاه پیام نور استان کرمان

2 اداره تحقیقات هواشناسی کشاورزی. رفسنجان

چکیده

در دهه‌های اخیر، نوسانات اقلیمی در طی فصل رشد درخت پسته، کاهش مشهودی در عملکرد کمی و کیفی این گیاه راهبردی در مناطق عمده تولید آن در ایران ایجاد کرده است. تحقیق حاضر با هدف مشخص‌کردن مهمترین عوامل اقلیمی مؤثر بر عملکرد پسته با استفاده از مدل درخت تصمیم (C&R tree) انجام شد. مدل‌ با استفاده از عوامل اقلیمی ایستگاه رفسنجان شامل سرعت باد، تعداد روزهای یخبندان، مجموع بارندگی، مجموع تبخیر، میانگین رطوبت هوا، جمع ساعات آفتابی، متوسط دما، میانگین کمینه دما و میانگین بیشینه دما (به عنوان متغیرهای ورودی) و عملکرد پسته (به عنوان متغیر هدف) طی سال‌‌های 1398-1380 اجرا شد. به منظور ارزیابی مدل، شاخص‌های آماری ضریب تبیین، جذر میانگین مربعات خطا، جذر میانگین مربعات خطای نسبی و اریبی استفاده شدند. درخت تصمیم برای میانگین 6 ماه پیش از برداشت و 6 ماه پس از برداشت (با تأثیر بر محصول سال بعد) به صورت جداگانه اجرا گردید و ضریب تبیین (R2) به ترتیب 88/0 و 86/0 بدست آمد که نشانگر مهارت قابل قبول رهیافت در تخمین عملکرد پسته می‌باشد. آمارهRMSE برای 6 ماه پیش و پس از برداشت محصول به ترتیب 521 و 558 (Kg ha-1) تعیین شد. بر اساس نتایج حاصل از کاربرد درخت تصمیم، از میان متغیر‌های مستقل مورد استفاده در مدلسازی در نیمه اول سال مهمترین متغیرهای اقلیمی به ترتیب رطوبت نسبی و تعداد ساعات آفتابی و در نیمه دوم سال به ترتیب سرعت وزش باد، دمای کمینه، میزان بارندگی و رطوبت نسبی هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of effective weather variables on pistachio yield using C&R decision tree algorithm

نویسندگان [English]

  • Somayeh Sadr 1
  • Mohsen Eslami 2
2 Agricultural Meteorological Research office. Rafsanjan
چکیده [English]

In recent decades, climate variation during the pistachio growing have significantly reduced the quantity nd quslity of yield of this strategic crop of Iran. The purpose of this study is to determine the most important climatic factors affecting pistachio crop yield using C&R decision tree model in Rafsanjan region south of Iran. during the period of 1380-1399. Modeling was performed using climatic variables including wind speed, number of frost days,rainfall,total evaporation,mean relative humidity, sunshine hours, mean temperature, mean of Tmax and Tmin as input variables and pistachio yield as the target variable. Correlation coefficient, root mean square error, relative error and bias metrics were used to evaluate the model. The decision tree model was run separately for 6 months before and sfter harvest. The obtained correlation coefficients were of 0.88 and 0.86, respectively, which is acceptable for prediction of yield. The RMSE values for pre- and post-harvest periods were 521 and 558 Kg ha-1, respectively. According to the results of the decision tree, during the preharvest period, the most significant attributes were the relative humidity and the number of sunny hours, respectively and the for the second half of the year the wind speed, minimum temperature, rainfall and relative humidity were the most affecting variables, respectively.

کلیدواژه‌ها [English]

  • decision tree
  • Modeling
  • Pistachio
  • Rafsanjan
  • Climatic variations
                Agricultural Statistics. 2017. Horticultural Products (Volume 3), inistry of Jihad Agriculture, Deputy of Planning and Economy, Information and Communication Technology Center)
Akbarpour, A., Khorashadizadeh, O., Shahidi, A., Ghochanian, E. 2013. Performance evaluation of artificial neural network models in estimate production of yield saffron based on climate parameters, Journal of Saffron Research, 1(1): 27-35. (In Farsi)
Arumugam, A. 2017. A predictive modeling approach for improving paddy crop productivity using data mining techniques. Turkish. Journal of Electrical Engineering & Computer Sciences, 25(6), 4777-4787.
Bannayan, M., Sanjani, S., Alizadeh, A., Sadeghi, A., Lotfabadi, S., Mohammadian, S. 2010. Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research, 118: 105–114.
Cai, Y., Guan, K., Lobell, D., Potgieter, A.B. Wang, S., Peng, J., Peng, B. 2019. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology, 274: 144-159.
Cammarano, D., Ceccarelli, S., Grando, S. Romagosa, I., Benbelkacem, A., Akar, T., Ronga, D. 2019. the impact of climate change on barley yield in the Mediterranean basin. European Journal of Agronomy, 106:1-11.‏
Crane, J.C. 1985. Pistachio. In Handbook of fruit set and development. CRC. Press.
Dastourani, M.T., Habibipoor, A., Ekhtesasi, M.R., Talebi, A., Mahjoobi, J. 2013. Evaluation of the Decision Tree Model in Precipitation Prediction (Case study: Yazd Synoptic Station), Iran-water resources research, 8(3): 14-23. (In Farsi)
Esmaeili, h., Mohammad Akhond Ali, A., Zarei, H. Taghian, M. 2018. Regional Flood Analysis Via Comparison of The M5 Decision Tree Algorithm and Regression Models, Iranian of irrigation Sciences and engineer, 40(4):183-195. (In Farsi)
Food and Agriculture Organization of the United Nations (FAO). 2018. http://www.fao.org /faostat/en/#data/QC.
Halabian, A., Javari, M. Akbari, Z., Akbari, G. 2018. Evaluating the Performance of Decision Tree Model in Estimating the Suspended Sediments of river (A case study on the Basin of     Meimeh      River), Geography       and       development iranian Journal, 15(49): 81-96. (In Farsi)
Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L.H. , Izaurralde, R.C., Ort, D., Thomson, A.M., Wolfe, D.    2011.   Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103: 351-370.
Hokm Abadi, H. 2016. Detection of environmental and non-environmental harmful factors on pistachio crop (insurance and compensation), Agricultural Education Research Publications, Tehran. (In Farsi).
Hosseini, M.T., Siosemarde, A., Fathi, P., Siosemarde, M. 2007. Application of artificial neural network (ANN) and multiple regressions for estimating assessing the performance of dry farming wheat yield in Ghorveh region; kurdistan province, Agricultural research, 7(1):41-54. (In Farsi).
Hossaini fard, S.J., Basirat, M., Sedaghati, N., Ekhyani, A. 2017. Integrated fertility management and plant nutrition in pistachio trees, Ministry of Jihad Agriculture, Pistachio Research Institute. (In Farsi).
Mahlein, A.K., Oerke, E.C., Steiner, U., Dehne, H.W. 2012. Recent advances in sensing plant diseases for precision crop protection. European. Journal Plant Pathology, 133: 197–209.
Monjezi, N. 2020. Diagnose and Prioritizing of Effective Managerial and Executive Factors on Water Productivity in Sugarcane Production and Providing Practical Solutions to Increase It. Iranian Journal of Biosystems Engineering, 51(1):99-112. (In Farsi)
Mozaffari, G. A., Shafie; Sh., Tagizadeh, Z. 2016. Evaluate the performance Regression Decision Tree Model in Predicting Drought (Case Study: Synoptic Station in Sanandaj),4(6):1-19. (In Farsi).
Peloia, P.R., Bocca, F.F., Rodrigues, L.H.A. 2019. Identification of patterns for increasing production with decision trees in sugarcane mill data. Scientia Agricola, 76(4), 281-289.
Rahmani, E., Liaghat, A., Khalili, A. 2010. Estimating Barley Yield in Eastern Azerbaijan Using Drought Indices and Climatic Parameters by Artificial Neural Network (ANN), Iranian Journal of Soil and Water Research, 39(1): 47-56. (In Farsi).
Sattari, M.T.,Abbasgoli Naebzad, M., Mirabbasi Najafabadi, R. 2014. Surface water quality prediction using decision tree method. Journal of Irrigation and Water Engineering, 4(3):76-88. (In Farsi).
Shirani, H. 2017. Artificial neural networks with an application approach in agricultural sciences and natural resources, Valiasr University of Rafsanjan Publications. (In Farsi).
Siebert, S., Webber, H., Rezaei, E.F. 2017. Weather impacts on crop yields searching for simple answers to a complex problem. Environmental. Research Letter. 12:081001.
Talebi, A., Akbari, Z. 2013. Investigation of Ability of   Decision    Trees Model to Estimate River Suspended Sediment (Case Study: Ilam Dam Basin). Journal of Water and Soil Science, 17 (63) :109-121. (In Farsi).
Veenadhari, S., Bharat, M.,. Singh, C. D., 2011. Soybean     Productivity      Modelling    using Decision Tree Algorithms, International Journal of Computer Applications, 27(7):11-16.
Yohaness, Y. 1999. Classification and Regression Tree: an Introduction. Research Institute of Washington, D.C.
Zakidizaji, H., Bahrami, H,. Monjezi, N., Shiekhdavoodi, M.J. 2019. Modeling of the Variables that Influence Sugarcane Yield using C5.0 and QUEST Decision Tree Algorithms. Journal of agricultural machinery, 9(2): 469-484. (In Farsi)