(مقاله علمی پژوهشی) ارزیابی تولید اولیه ناخالص برآوردی سنجنده MODIS با استفاده از برج‌های اندازه‌گیری شار کربن (مطالعه موردی: جنگل‌های معتدله انگلستان)
20.1001.1.23453419.1399.8.2.7.9

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آلودگی محیط زیست ، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه ملایر، ملایر، ایران

2 دانشیار گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ایران.

3 گروه علوم و مهندسی جنگل، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، مازندران، ایران.

4 بخش محیط زیست، شرکت مهندسی مشاور مهاب قدس، تهران، ایران

چکیده

در این پژوهش، محصول تولید اولیه ناخالص سنجنده مودیس (MODIS-GPP) به عنوان نمایه‌ای از توان بالقوه پوشش گیاهی در ترسیب دی‌اکسید‌کربن جو سطح زمین با استفاده از داده‌های برج شار کربن (Flux Tower-GPP) در سه منطقه همگن جنگلی از درختان برگ پهن در جنوب انگلستان مورد ارزیابی و مقایسه قرار گرفت. پس از انجام آزمون نرمال بودن، میانگین سنجنده‌ی مودیس (پیکسل 1 × 1 کیلومتر) با Flux Tower GPP مقایسه شد. بر اساس نتایج آزمون تی- استیودنت دو طرفه، بین میانگین داده‌ها اختلاف معنی‌‌داری در سطح 95% وجود دارد. در دو ایستگاه Alice Holt و Wytham مقادیر اندازه گیری شده توسط برج‌ها بیشتر از MODIS-GPP می‌باشد؛ در حالی که در ایستگاه Pang Lambourne برعکس است که می‌تواند ناشی از ناهمگنی پوشش سطح زمین باشد. روند تغییرات فصلی هر دو سری داده یکسان می‌باشد و در تمامی ایستگاه‌ها افزایش GPP در مراحل نمو گیاهان نمایان است. میزان این کمیت با یک شیب ملایم تا ابتدای ماه می افزایش می‌یابد و تا نیمه‌ تابستان با افزایش تراکم تاج پوشش، تحت تاثیر بیشینه تابش فعال فتوسنتزی جذب شده توسط گیاهان و فعالیت فتوسنتزی، افزایش می‌یابد. در اواخر فصل تابستان مقدار آن بتدریج کاهش می‌یابد و سرانجام، با شروع فصل پاییز و افت دمای هوا، کاهش سریعی در ماه اکتبر مشاهده شد. استفاده از داده‌های MODIS-GPP برای برآورد توان تولید بوم‌سازگان‌ها به‌دلیل ناهمگنی ساختاری درون پیکسل این داده‌ها به تنهایی قابل اعتماد نمی‌باشد. از طرف دیگر به دلیل محدودیت تعداد برج‌های اندازه‌گیری شار کربن، از این برج‌ها نمی‌توان به تنهایی برای درون‌یابی و بررسی تغییرات مکانی و زمانی کمیتGPP استفاده کرد. بنابراین، استفاده توام داده‌های MODIS-GPP و Flux Tower-GPP در ارزیابی توان تولید بالقوه بوم‌سازگان‌ها در سطح منطقه‌ای و جهان قابل توصیه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of MODIS-based gross primary production by flux tower measurements (Case study: Temperate forests of England)

نویسندگان [English]

  • Hasan Abbasian 1
  • Eisa Solgi 2
  • Seyyed mohsen Hosseini 3
  • Sayed Hossain Kia 4
1 Ph.D student ‎of Environmental Pollution, Faculty of Natural Resources and Environment, Malayer University, Malayer,Iran
2 Associate Professor Department of Environment, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
3 Department of Forest Science and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Mazandaran, Iran
4 Division of Environment, Mahabghodss Consulting Engineering Co, Tehran, Iran
چکیده [English]

MODIS-based Gross Primary Production (MODIS-GPP) as a proxy of the potential of vegetation cover in the atmospheric carbon sequestration was evaluated using Flux Tower measurements (Flux Tower-GPP) across three sites, broadleaved temperate deciduous woodlands, in the south of England. Ensuing to the normal evaluation of data distribution, the mean value of MODIS-GPP (cell size: 1km2) compared with the Flux Tower-GPP through the Two-Tailed T-Test (P < 0.05). A significant difference between two groups, MODIS-GPP vs. Flux Tower-GPP, was found that there is a measurable difference between the groups and that, statistically. The results show that Flux Tower-GPP values for both Alice Holt and Wytham Woods sites are higher than the MODIS-GPP, while in Pang Lambourne the opposite is true due to land cover heterogeneity. The trend of seasonal changes of both groups is the same and the increase of GPP in plant phenology is observable in all sites. GPP values gradually increase to early of May, then a prompt rising observed in May that extend to late of summer which arisen from development of solar radiation, day length and photosynthetic activity. In late of summer, GPP values gradually decrease so that by advent of autumn a rapid decline come about in the early of October that corresponds with senescence and abscission, due to decreasing temperature, which reflects the seasonal variation in terms of carbon uptake. The research finding reveals that the MODIS-GPP alone is unable to estimate accurately the potential of vegetation cover in the atmospheric carbon sequestration due to sub-pixel variability in plant functional type. On the other hand, despite at certain sites the meteorological bias influences estimates of GPP significantly and flux towers provide an excellent means to estimate accurately GPP across their footprint, they are sparse worldwide, even at the regional scale. Thus, the Flux Tower GPP may not truly be used to estimate a continuous GPP map at a larger area. Therefore, Flux Tower and MODIS individually have large uncertainty but their combination as a complementary could result in a robust estimation of GPP.
 

کلیدواژه‌ها [English]

  • Flux tower
  • Carbon dioxide
  • GPP
  • Ecosystem
  • MODIS
Burba, G., Anderson, D. 2010. A brief practical guide to eddy covariance flux measurements: principles and workflow examples for scientific and industrial applications. Li-Cor Biosciences, 214 pp.
Coops, N.C., Black, T.A., Jassal, R.P.S., Trofymow, J.T., Morgenstern, K.2007. Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand. Remote Sensing of Environment, 107(3): 385-401.
Desai, A.R., Xu, K., Tian, H., Weishampel, P., Thom, J., Baumann, D., Andrews, A.E., Cook, B.D., King, J.Y., Kolka, R. 2015. Landscape-level terrestrial methane flux observed from a very tall tower. Agricultural and Forest Meteorology, 201: 61-75.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X. 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1): 168-182.
Gustav, W.2015.Remote sensing of GPP in the Sahel using MSG/SEVIRI and MODIS satellite data. M. Sc.   thesis.   Department  of   Physical Geography and Ecosystem Science, Lund University.
Guzy, P., Pietrzycki, D., Świerczewska, A., Sechman, H., Twaróg, A., Góra, A. 2017. Emission Measurements of Geogenic Greenhouse Gases in the Area of “Pusty Las” Abandoned Oilfield (Polish Outer Carpathians). Journal of Ecological Engineering, 18(4): 100-109.
IPCC.1995. IPCC Second Assessment Synthesis of Scientific. Available on:www.ipcc.ch.
Kanniah, K. D., Beringer, J., Hutley, L. B., Tapper, N. J., Zhu, X. 2009. Evaluation of Collections 4 and 5 of the MODIS Gross Primary Productivity   product and algorithm improvement at a tropical savanna site in northern Australia. Remote Sensing of Environment, 113(9):1808-1822.
Kia, S. H. Milton, E. J. 2015.Hyper-Temporal Remote Sensing for Scaling between Spectral Indices and Flux Tower Measurements. Applied Ecology and Environmental Research 13(2): 465-487.
LICOR Environmental News.  Available on: www.licor.com.
Paul, L. E., Wolf, S., Schneider, F.D., Longo, M., Moorcroft, P., Gharun, M. and Damm, A. 2020. Partitioning evapotranspiration with concurrent eddy covariance measurements in a mixed forest. Agricultural and Forest Meteorology, 280, p.107786.
Nicolini, G., Aubinet, M., Feigenwinter, C., Heinesch, B., Lindroth, A., Mamadou, O., Moderow, U., Mölder, M., Montagnani, L., Rebmann, C. and Papale, D. 2018. Impact of CO2 storage flux sampling uncertainty on net ecosystem exchange measured by eddy covariance. Agricultural and Forest Meteorology, 248: 228-239.
Rabb, B. 2010. Integrated modelling of climate and land use change impacts on groundwater flooding risk in a Chalk catchment. PhD Thesis, Cardiff University.
Ramoelo, A., Majozi, N., Mathieu, R., Jovanovic, N., Nickless, A., Dzikiti, S. 2014. Validation of global evapotranspiration product (MOD16) using flux tower data in the African savanna, South Africa.Remote Sensing, 6(8): 7406-7423.
Rapson, T. D., Dacres,   H.   2014.    Analytical techniques for measuring nitrous oxide. TrAC Trends in Analytical Chemistry, 54: 65-74.
Rapson, T.D., Dacres, H. 2014. Analytical techniques for measuring nitrous oxide. TrAC Trends in Analytical Chemistry, 54: 65-74.
Savill, P. S., Perrins, C. M., Kirby, K. J., Fisher, N.2010. WythamWoods: Oxford’s Ecological Laboratory. Oxford UniversityPress. 282 pp.
Sjöström, M., Ardö, J., Arneth, A., Boulain, N., Cappelaere, B., Eklundh, L., De Grandcourt, A., Kutsch, W.L., Merbold, L., Nouvellon, Y., Scholes, R.J.2011. Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems. Remote sensing of environment, 115(4):1081-1089.
Skinner, R.H., Wagner-Riddle, C., Liebig, M.A., Franzluebbers, A.J., Follett, R.F.2012. Micrometeorological methods for assessing greenhouse gas flux. Managing agricultural greenhouse gases: coordinated agricultural research through GRACEnet to address our changing climate. Academic Press, Cambridge, MA, USA,367-384.
Steven, W. R., Maosheng, Z. 2015. User's Guide Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm, 28 pp.
Tagesson, T., Fensholt, R., Cropley, F., Guiro, I., Horion, S., Ehammer, A., Ardö, J. 2015. Dynamics in carbon exchange fluxes for a   grazed semi-arid savanna ecosystem in West Africa. Agriculture, Ecosystems and Environment, 205: 15-24.
Teng, D., He, X., Wang, J., Wang, J. and Lv, G. 2020. Uncertainty in gap filling and estimating the annual sum of carbon dioxide exchange for the desert Tugai forest, Ebinur Lake Basin, Northwest China. PeerJ, 8, p.e8530.
Thomas, M. V., Malhi, Y., Fenn, K. M., Fisher, J. B., Morecroft, M. D., Lloyd, C. R., Taylor, M. E., McNeil, D. D. 2011. Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England, Biogeosciences, 8: 1595-1613.
Tokoro, T., Kuwae, T. 2018. Improved Post-processing of Eddy-Covariance Data to Quantify Atmosphere–Aquatic Ecosystem CO2 Exchanges. Frontiers in Marine Science, 5: 286.
Xianming, D., Yongguo, Y., Jinhui, L.2018. Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements. Sustainability, 10: 203.
Xiao, J., Chen, J., Davis, K.J., Reichstein, M. 2012. Advances in upscaling of eddy covariance measurements of carbon and water fluxes. Journal of Geophysical Research, 117: 1-4.
Zhang, K., Gong, Y., Escobedo, F.J., Bracho, R., Zhang, X., Zhao, M. 2019. Measuring Multi-Scale Urban Forest Carbon Flux Dynamics Using an Integrated Eddy Covariance Technique. Sustainability, 11: 4335.
Zhang, L.X., Zhou, D.C., Fan, J.W., Hu,Z.M. 2015. Comparison of four light use efficiency models for estimating terrestrial gross primary production. Ecological Modelling, 300: 30-39.
Zhao, M., Running, S. W., and Nemani, R. R. 2006. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalysis. Journal of Geophysical Research, 111: G01002.                    ORNL DAAC. 2018. Fixed Sites Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA.Available on: www.modis.ornl.gov.