(مقاله علمی پژوهشی) مقایسه مشخصات ایزوتوپ‌های پایدار بارش سیل‌آسا فروردین 1398 در جنوب غرب کشور با خط آب جوی دیگر مناطق ایران و کشورهای مجاور
20.1001.1.23453419.1399.8.2.6.8

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 گروه زمین شناسی معدنی و آب، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران

3 گروه زمین شناسی معدنی و آب، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

بارش سیل‌آسا فروردین 1398 با میانگین 230 میلی‌متر -معادل 46 درصد بارش سالانه جنوب غرب ایران- در مدت 4 روز، باعث سرریز شدن سدهای بزرگ رودخانه‌های دز و کرخه و خسارات جانی و مالی فراوان گردید. به منظور تعیین مشخصات ایزوتوپ‌های پایدار 2H و 18O این رخداد فرین هیدرومتئدرولوژی، 43 نمونه آب باران در مساحت حدود 41000 کیلومتر مربع در جنوب غرب ایران از ارتفاع متغیر نزدیک صفر تا 2814 متر نسبت به سطح دریا جمع‌آوری گردید. تغییرات مقادیر ایزوتوپی δ18O از 71/4 تا 76/4- و δ2H از 06/26- تا 2/29 می‌باشد. خط آب جوی منطقه در طی سیلاب مذکور تهیه و با خط آب جوی جهانی، مدیترانه و سایر نقاط ایران و همچنین کشورهای مجاور مورد مقایسه قرار گرفت. با توجه به معادله خط آب جوی (δ2H = 6.5996 δ 18O + 7.561) و دوتریوم مازاد (بین 26/9- تا 55/15 با میانگین 85/7) نتیجه‌‌گیری می‌شود که منشأ بارش­های منطقه در بازه زمانی مذکور از ادغام توده‌های جوی دریای مدیترانه و دریای سرخ بوده است. از جنوب و جنوب غربی منطقه به سمت ارتفاعات بالاتر (شمال و شمال شرقی) مقادیر دوتریوم مازاد افزایش می‌یابد که این امر بیانگر تهی‌تر شدن ترکیب ایزوتوپی به سمت ارتفاعات منطقه می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Characteristics of stable Isotopes of the heavy rainfall event of April 2019 in Southwest Iran comparing with LMWL of other regions of country and neighboring countries

نویسندگان [English]

  • S. Farhadi 1
  • F. Alijani 2
  • H. Nassery 3
1 Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Assistant Professor, Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
3 Department of Minerals and Groundwater Resources, Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran
چکیده [English]

The heavy rainfall event of April 2019 with 230 mm, i.e. 46% of the mean of annual rainfall of southwest Iran, over 4 days caused the overflow of Dez and Karkheh large dams and huge financial losses. In order to determine the characteristics of stable isotopes of 2H and 18O of this extreme event, 43 samples of rain water were collected in the area about 41000 (Km2) in southwestern Iran with altitude ranging between zero to 2814 m above sea level (a.s.l). The variations of the isotopic values of δ18O and δ2H were 4.71 to -4.76 and -26.06 to 29.2, respectively. The local meteoric water lines were calculated during the flood event and compared with the corresponding global, Mediterranean and other parts of Iran values as well as neighboring countries. According to the equation of LMWL (δ2H = 6.5996 δ18O + 7.561) and deuterium excess (between -9.26 to 15.55 with average value of 7.85), it is concluded that the source of precipitation in the study period was the integrated effect of the of Mediterranean and Red Sea air masses. Deuterium excess increased from the south and southwest of the study area to higher altitudes (located in north and northeast), indicating depletion of the isotopic composition toward the high altitudes.

کلیدواژه‌ها [English]

  • Isotopes
  • Extreme event
  • Iran
  • LMWL
  • Deuterium excess
Charideh, A.R. 2011. Environmental isotope study of groundwater discharge from the large karst springs in the west Syria. Journal of Environmental Earth Science, 63: 1–10.
Ali, K.K., Al-Kubaisi, Q., Al-Paruany, K.B. 2015. Isotopic study of water resources in a semi-arid region, western Iraq. Journal of Environmental Earth Science, 74: 1671-1686.
Ambach, W. 1968. The altitude effect on the isotopic composition of precipitation and glacier ice in the Alps. Tellus, 20: 595–600.
Araguas-Araguas, L., and K. Froehlich, 1998: Stable isotope composition of precipitation over Southeast Asia. J. Geophys. Res., 103: 28721–28742.
Aravena, R., Suzuki, O., Pena, H. 1999. Isotopic composition and origin of the precipitation in Northern Chile. Journal of Applied Geochemistry, 14: 411–422.
Birks, S.J., Gibson, J.J., Gourcy, L. 2002. Maps and animations offer new opportunities for studying the global water cycle. EOS: Transactions American Geophysical Union, 83: 406.
Bortolami, G.C., Ricci, B., Suzella, G.F., Zuppi, G.M. 1978. Isotope hydrology of the Val Coraoglia, Maritime Alps, Piedmont, Italy. International symposium on isotope hydrology; Neuherberg, Germany: 327–348.
Clark, I., Fritz, P. 1997. Environmental Isotopes in hydrology. Lewis publishes, new Lewis publishes, New York: 328.
Craig, H. 1961. Isotopic variations in natural waters. Science, 133: 1702–1703.
Cressie, N. 1990. Mathematical Geology, 22(3): 239-252
Dailai, T.K., Bhattacharya, S.K., Krishnaswami, S. 2002. Stable isotopes in the source waters of the Yamuna and its tributaries: seasonal and altitudinal variations and relation to major cations. Journal of Hydrological Processes, 16: 3345–3364
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus, 16: 436–468.
Dirican, A., Ünal, S., Demircan, M. 2005. The temporal and seasonal variation of H-2   and   O-18   in   atmospheric    water    vapor     and       precipitation from Ankara, Turkey in relation to  air mass trajectories at Mediterranean Basin. IAEA-TECDOC-1453.
Farpoor, M., Khademi, H., Eghbal, M., Krouse, H.R. 2004. Mode of gypsum deposition in south eastern Iranian soils as revealed by isotopic composition of crystallization water. Journal of Geoderma, 12: 233–242.
Florea, L., Bird, B., Lau, J.K., Wang, L., Lei, Y., Yao, T., Thompson, L.G. 2017. Stable isotopes of river water and groundwater along altitudinal gradients in the high Himalayas and the   eastern Nyainqentanghla Mountains. Journal of Hydrology: Regional Studies, 14: 37–48.
Fontes, J.C., Olivry, J.C. 1977. Gradient isotopique entre 0 en 4000 m dans les precipitations du Mount Cameroun. Comptes Rendus Reunion Annuelle Sciences de la Terre. Societa Geologica Francaise Paris: 171.
Froehlich, K., Gibson, J. J., Aggarwal, P. 2002.  Deuterium excess in precipitation and its climatological significance, in: Study of Environmental Change Using Isotope Techniques, International Atomic Energy Agency, Vienna, 54–66.
Gasparini, A., Custudio, E., Fontes J.C., Jimenez, J. 1990. Example d etude geochimique of is toque de circulation aquifer en Terrain volcanque climate semi-arid. Journal of Hydrology, 114: 61–91.
Gat, J.R. 1995. The relationship between the isotopic composition of precipitation, surface runoff and groundwater for semi-arid and arid zones. IAHS Publ., 232:409–416.
Gat, J.R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Journal of Annual Review of Earth and Planetary Science, 24: 225–262.
Gat, J.R., Carmi, I. 1970. Evolution in the isotopic composition of atmospheric waters in the Mediterranean Sea area. Journal of Geophysical Research, 75: 3039-3048.
Gat, J.R., Klein, B., Kushnir, Y., Roether W., Wernli, H., Yam, R., Shemesh, A. 2003. Isotope composition of air moisture over the Mediterranean Sea: an index of the air–sea interaction pattern. Tellus, 55B: 953–965.       Al-
Gibson, J.J., Price J.S., Aravena, R., Fitzgerald, D.F., Maloney, D. 2000.  Runoff generation in a hyper maritime bog-forest upland. Journal of Hydrological Processes, 14: 2711–2730.
Gonfiantini, R. 1986. Environmental isotopes in lake studies. Handbook of Environmental Isotope Geochemistry (P. Fritz, J.-Ch. Fontes, Eds) Elsevier, Amsterdam, 113–168.
Hatvani, I.G., Leuenberger, M., Kohan, B., Kern, Z. 2017. Geostatistical analysis and isoscape of ice core derived water stable isotope records in an Antarctic macro region. Journal of Polar Science, 13: 23–32.
Hoffman, G., Jouzel, J., Masson, V. 2000. Stable water isotopes in atmospheric general circulation models. Journal of Hydrological Processes, 14: 1385–1406.
Jasechko, S., Sharp, Z.D., Gibson, J.J., Birks, S.J., Yi, Y., Fawcett, P.J. 2013. Terrestrial water fluxes dominated by transpiration. Journal of Nature, 496: 347-350.
Jeelani, G., Saravana, U., Kumar, B. 2013. Variation of δ18 O and δD in precipitation and stream waters across the Kahir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow. Journal of Hydrology, 481: 157–165.
Johnsen, S.J., Dansgaard, W., White, J.W.C. 1989. The origin of Arctic precipitation under present and glacial conditions. Tellus B, 41: 468-452.
Jouzel, J., Delaygue, G., Landais, A. 2013. Water isotopes as tools to document oceanic sources of precipitation. Journal of Water Resources Research, 49: 7469-7486.
Jouzel, J., Merlivat, L. 1984. Deuterium and oxygen-18 in precipitation: modeling of the isotope effects during snow formation. Journal of Geophysical Research, 89: 11749–11757
Karimi, H. 2013a. Differentiation of spring catchment area using isotope data; Case study: Beshiveh Plain springs; Kermanshah. Proceedings of the 1st National Conference on Application of Stable Isotopes, Mashhad, Iran: 104– 109. (In farsi)
Karimi, H. 2013b. Investigating composition of 18O and 2H stable isotopes in precipitations of West Zagros. Proceedings of the 1st National Conference on Application of Stable Isotopes, Mashhad, Iran: 110–115. (In farsi)
Kattan, Z. 2006. Characterization of surface water and groundwater in the Damascus Ghotta basin: hydrochemical and environmental isotopes. Journal of Environmental Geology, 51: 173–201.
Kattan, Z. 1997.  Chemical and environmental isotope study of precipitation in Syria, Journal of Arid Environments , 35( 4): 601-615.
Kazemi, G.A. 2013. Isotope composition (18O and 2H) in precipitations of Shahrood area. Proceedings of the 1st National Conference on Application of Stable Isotopes, Mashhad, Iran: 54–60. (In farsi)
Kendall, C., McDonnell, J.J. (ed). 1998. Isotope Tracers in Catchment Hydrology. Elsevier Science BV, Amsterdam: 839.
Khademi, H., Mermut, A.R., Krouse, H.R. 1997. Isotopic composition of gypsum hydration water in selected landforms from central Iran. Journal of Chemical Geology, 138: 245– 255.
Khalili, K., Tahoudi, M.N., Mirabbasi, R., Ahmadi, F. 2016. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Journal of Stochastic Environmental Research and Risk Assessment 30: 1205–1221.
Kong, Y., Wang, K., Li, J., Pang, Z. 2019.  Stable isotopes of precipitation in China: A consideration of moisture sources. Journal of Water, 11(6): 1239
Lawrence, J.R., Gedzelman, S.D., White, J.W.C. 1982. Storm trajectories in eastern US: D/H isotopic composition of precipitation. Journal of Nature, 296: 638–640.
Li, J., Tao T., Pang Zh., Tan, M., Kong, Y., Duan, W., Zhang Y. 2015. Identification of Different Moisture Sources through Isotopic Monitoring during a Storm Event. Journal of Hydrometeorology.16:1918-11927
Liotta, M., R. Favara, Valenza M. 2008. Isotopic composition of the precipitations in the central Mediterranean: Origin marks and orographic precipitation effects. Journal of Geophysical Research Atmospheres, 111, D19302.
Longinelli, A., Selmo, E. 2003. Isotopic composition of precipitation in Italy: A first overall map. Journal of Hydrology, 270: 75–88.
Mariani, I., Eichler, A., Jenk, T. M., et al. 2014. Temperature and precipitation signal in two Alpine ice cores over the period 1961-2001. Journal of Climate of the past, 10: 1093-1108.
Mazor, E. 2004. Chemical and isotopic groundwater hydrology, 3rd edn. Weizmann Institute of Science Rehovot, New York: 465.
Merlivat, L., Jouzel, J. 1979. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research: Oceans 84: 5029–5033.
Mohammadzadeh, H., Amiri, V. 2019.       Investigation of (Alluvial and Karstic) Groundwater Residence Time in Pol-e-Zahab Study Area Using Spatiotemporal Variations Gibson, J.J., Edwards, T.W.D. 2002. Regional surface water balance and evapotranspiration partitioning from a stable isotope survey of lakes in northern Canada. Journal of Global Biogeochemical Cycles, 16: 1-10.
Mohammadzadeh, H., Ebrahimpoor, S. 2012. Application of stable isotopes and hydrochemistry to investigate sources and quality exchange Zarivar catchment area.Journal of Water and Soil, 26: 1018–1031. (In farsi) 
Mook, W.G. 2001. Environmental Isotopes in the hydrological cycle (Principles and applications). 5: UNESCO, Paris: 105.
Osati, K.,  Koeniger, P., Salajegheh, A., Mahdavi, M, Chapi K., Malekian A. 2013. Spatiotemporal patterns of stable isotopes and hydrochemistry in springs and river flow of the upper Karkheh River Basin, Iran, Isotopes in Journal of Environmental and Health Studies, 50(2): 169–183.
Rozanski, K., Aragua′ s-Aragua′ S.L., Gonfiantini, R. 1993. Isotopic patterns in modern global precipitation. In: Climate Change in Continental Isotopic Records (eds. P. K. Swart, K. C. Lohmann, J. McKenzie, and S. Savin). Geophysical Monograph, 78, AGU, Washington, DC :1-36.
Scholl, M.A., Shanley, J.B., Zegarra, J.P., Coplen, T.B. 2009. The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico. Journal of Water Resources Research, 45(12): W12407.
Seal H.L 1967. The historical development of the Gauss linear model. Biometrika, 54 (1/2): 1–24.
Sengupta, S., Sarkar, A. 2006. Stable isotope evidence of dual (Arabian Sea and Bay of Bengal) vapour sources in monsoonal precipitation over north India. Earth Planet Sci Lett 250: 511–521. doi:10.1016/j.epsl.2006.08.011
Shamsi, A., Kazemi, Gh.,A., 2014, A review of research dealing with isotope hydrology in Iran and the first Iranian meteoric water line. Journal of Geope, 4 (1): 73-86.
Sharp, R.P, Epstein, S., Vidziunas, I. 1960. Oxygen-isotope ratios in the Blue Glacier, Olympic Mountains, Washington, U.S.A. Journal of Geophysical Research, 65(12): 4043–4059.
Siegenthaler, U., Oeschger, H. 1980. Correlation of 18O in precipitation with temperature and altitude. Journal of Nature, 285: 314–317.
Stumpp, C., Klaus, J., Stichler, W. 2014. Analysis of long-term stable isotopic composition in German precipitation. Journal of Hydrology, 517(4): 351-361.
Sun, C., Shen, Y., Chen, Y. 2018. Quantitative evaluation    of    the    rainfall    influence    on streamflow in an inland mountainous river basin    within    Central    Asia.    Journal     of Hydrological Sciences, 63(1): 17-30.
Telmer, K., Veizer, J. 2000. Isotopic constraints on the transpiration, evaporation, energy and GPP budgets of a large boreal watershed: Ottawa River basin, Canada. Journal of Global Biogeochemical Cycles, 14: 149–166.
Thompson, L.G., Yao, T., Mosley-Thompson, E., Davis, M., Henderson, K., Lin, P. N. 2000. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Journal of Science, 289: 1916–1919.
Tian, L., Yao, T., White, J.W.C., Wusheng, Y., Ninglian, W. 2005. Westerly moisture transport to the middle of Himalayas revealed from the high deuterium excess. Journal of Chinese Science Bulletin, 50: 1026–1030.
Tian, L.D., Yao, T.D., Clune, K.M. et al., 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysical Research, 112: D10112.
Tsujimura, M., Abe, Y., Tanaka, T., Shimada, J., Higuchi, S., Yamanaka, T., Davaa, G., Oyunbaatar, D. 2007. Stable isotopic and geochemical characteristics of groundwater in Kherlen River basin, a semiarid region in eastern Mongolia. Journal of Hydrology, 333: 47–57.
Uemura, R, Yonezawa, N., Yoshimura, K., Asami, R., Kadena, H. 2012. Factors controlling isotopic composition of precipitation on Okinawa Island, Japan: implications for paleoclimate reconstruction in the East Asian Monsoon region. Journal of Hydrology, 475: 314-322.
Vogel, J.C., Lerman, J.C., Mook W.G. 1975. Natural isotopes in surface and groundwater from Argentina. Journal of Hydrological Science Bulletin, XX(2): 203–221.
Wang, L., Dong, Y., Han, D., Xu, Z. 2019. Stable isotopic compositions in precipitation over wet Island in Central Asia. Journal of Hydrology, 573: 581–591.
Wang, S., Zhang, M., Che, Y., chen, F., Qiang, F. 2016b. Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach. Journal of Water Resources Research, 52(4): 3246-3257.
Wang, S., Zhang, M., Che, Y., Zhu, X., Liu, X. 2016c. Influence of below-cloud evaporation on deuterium excess in precipitation of arid central Asia and its meteorological controls. Journal of Hydrometeorology, 17(7): 1973-1984.
Wang, S., Zhang, M., Hughes, C.E., Zhu, X., Dong, L., Ren, Zh. 2016a. Factors controlling of Isotopic Composition (δ2H, δ18O), Journal of Water Resources Research, 15 (1): 327-340. (In farsi)
Wang, S., Zhang, M., Hughes, C.E., Zhu, X., Dong, L., Ren, Zh. 2016a. Factors controlling stable isotope composition of precipitation in arid conditions: an observation network in the Tianshan Mountains, central Asia. Tellus B, 68(1):289-299.
Yamanaka, T., Tsujimura, M., Oyunbaatar, D. 2007. Isotopic variation of precipitation over eastern Mongolia and its   implication   for   the atmospheric     water     cycle. Journa of Hydrology, 333: 21– 34
Yonge, C.J., Goldenberg, L., Krouse, H.R. 1989. An isotope study of water bodies along a traverse of southwestern Canada. Journal of Hydrology, 106: 245–255.
Yurtsever, Y., Gat, J.R. 1981. Atmospheric waters. Vienna: International Atomic Energy Association: 103–139.