Determination of Single and Dual Crop Coefficients and Potential Evapotranspiration of Developed Saffron

Document Type : Original Article

Authors

1 M. Sc. Graduate, Water Engineering Department , Faculty of Agricultural, University of Shiraz

2 Professor, Water Engineering Department , Faculty of Agricultural, University of Shiraz

3 Associate Professor, Water Engineering Department , Faculty of Agricultural, University of Shiraz

Abstract

Agriculture as the largest water consumer for its efficient water use requires an appropriate irrigation scheduling. For an optimum irrigation the amount of potential evapotranspiration is needed. The aim of this study was to measure potential evapotranspiration and single and dual crop coefficients of saffron in the agricultural research farm of Shiraz University located in Bajgah area for third and forth years of Saffron crop life cycle. This experiment was conducted using three water balance lysimeters. According to lysimetric measurements, total potential evapotranspiration were 726 and 783 mm for the third and fourth year, respectively. Maximum potential evapotranspiration rate was 6.28 and 6.4 mm day-1 for the third year and fourth year, respectively. Different growth stages length of saffron for the third and fourth year were 30, 55, 55 and 65 days. The single crop coefficient for the initial, middle and the final growth stages for the third and fourth years were estimated 0.46, 1.2 and 0.35; 0.49, 1.25 and 0.35, respectively. Similarly, basal crop coefficients for three stages of the third and fourth year were 0.15, 0.9 0.17 and 0.15, 0.95 and 0.18, respectively.

Keywords


مالک، ا.، 1360. روش‌های بررسی بیلان آب و تعیین اقلیم با مثالی در مورد باجگاه، مجله علوم کشاورزی ایران، (12): 57-72.
  یرمی، ن.، 1387. تعیین تبخیر - تعرق بالقوه و ضریب گیاهی زعفران با استفاده از لایسیمتر زهکش­دار.  پایان نامه کارشناسی ارشدآبیاری و زهکشی، دانشکده کشاورزی، دانشگاه شیراز.
Allen, R. G., Pereira, L. S., Raes, D., Smith, M. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrig.and Drain., 56:1-300.
Azizi-Zohan, A., Kamgar-Haghighi, A. A., Sepaskhah, A. R. 2008. Crop and pan coefficients for saffron in a semiarid region of Iran. J. Arid Enviorn., 72: 270-278.
Doorenbos, J., Pruitt, W. O. 1977. Crop Water Requirements. Irrig. Drain., Paper 24 FAO, Rome., 144 p.
Howell, T. A., Mc Cormick, R. L., Phene, C. J. 1985. Design and installation of large weighing lysimeter. Trans. ASAE., 28: 106-112.
Sepaskhah, A. R., Fooladmand, H. R. 2004. A computer model for desing of microcatchment water harvesting system for rain-fed vineyard. Agric. Water Manag., 64: 213-232.
Sepaskhah, A. R., Andam, M. 2001. Crop coefficient of sesame in a semi- arid region of I. R. Iran. Agric. Water. Manag., 49: 51-63.
Sepaskhah, A.R., Kamgar-Haghighi,  A. A. 2009. Saffron  Irrigation  Regime. Inter. J. Plant Prod., 3 (1): 1-16.
Sepaskhah, A. R., Dehbozorgi, F., Kamgar-Haghighi, A. A. 2008. Optimal irrigation water and saffron corm planting intensity under two cultivation practices in a semi arid region. Biosyst. Eng., 101:452-462.
Yarami, N., Kamgar-Haghighi, A. A., Sepaskhah, A. R., Zand-Parsa, Sh. 2012. Determination of the potential evapotranspiration and crop coefficient for saffron using a water-balance lysimeter. Arch. Agron. Soil Sci., 57(7): 727-740.