ارزیابی اثر تغییر اقلیم بر دما و بارش فصل رشد گندم دیم در استان کردستان

نوع مقاله: مقاله پژوهشی

نویسنده

دانش‌آموخته دکتری هواشناسی کشاورزی، گروه مهندسی آب، دانشگاه فردوسی مشهد

چکیده

گرمایش جهانی الگوی دما و بارش را دستخوش تغییر کرده و بر تولید محصولات زراعی از جمله گندم دیم اثر گذار خواهد بود. در این پژوهش با روش‌های تحلیل همبستگی و تحلیل کای‌اسکور تکرار‌شونده، ارتباط عملکرد گندم دیم در منطقه کردستان (در ایستگاه‌های سقز، سنندج، بیجار و زرینه اوباتو) با متغیرهای دمایی و بارش تعیین و سپس چشم‌انداز عملکرد تحت یک سناریوهای واداشت تابشی ارزیابی گردید. به این منظور خروجی روزانه هفت مدل انتخابی CMIP5 تحت سناریوی RCP8.5 برای دوره زمانی 2045 الی 2065  اخذ و با روش خطای نگاشت هم فاصله تابع توزیع تجمعی (EDCDFm) تصحیح شدند. نتایج نشان داد، بارش در اوایل کاشت و طی مرحله گل‌دهی، و دمای حداکثر پیش از شروع دوره رکود زمستانه گیاه و طی مرحله گل‌دهی، و همچنین دمای حداقل ماه‌های ژانویه و فوریه تأثیرگذارترین عوامل بر عملکرد محصول هستند. پیش‌نگری‌ها نشان داد افزایش دمای بیشینه در ماه‌های نوامبر، دسامبر، آوریل و مه، موجب کاهش محصول خواهد شد، در حالیکه با افزایش دمای بیشینه و کمینه ماه‌های ژانویه و فوریه شرایط برای تولید مطلوب تر خواهد بود. پیش‌نگری تغییرات بارش نشان داد با کاهش بارش ماه‌های آوریل و مه، شرایط رطوبتی جهت تولید نامناسب است، در حالیکه افزایش بارش ماه نوامبر می­تواند شرایط رطوبتی در اوایل کاشت، و در نتیجه میزان عملکرد محصول را بهبود دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the impact of climate change on temperature and precipitation of rainfed wheat production in Kurdistan province

نویسنده [English]

  • Mojtaba Shokouhi
Ph.D. graduate of Agricultural Meteorology, Department of Water Engineering, Ferdowsi University of Mashhad
چکیده [English]

Global warming has changed the pattern of temperature and precipitation distribution and will affect the production of crops such as rainfed wheat. In current study, by using correlation analysis and Iterative Chi-square analysis the wheat yield’s relationship with temperature and precipitation variables (in Saqez, Sanandaj, Bijar, and Zarrine obato Stations) was determined, and used to project the crop yield under climate change scenarios. The daily outputs of seven selected CMIP5 models under RCP8.5 scenario for the period 2045 to 2065 were used and corrected by Equidistant Cumulative Distribution Function matching (EDCDFm) method. The results showed that precipitation at the time of planting and during the flowering stage, the maximum temperature just before winter dormancy stage and during the flowering, the minimum temperature of January and February months are the most significant factors affecting the crop yield. The projected climatic conditions showed that the maximum temperature rise in November, December, April, and May will be unfavorable for crop production. Increased both maximum and minimum temperatures of months of January and February may provide more favorable conditions. Also, the projection of precipitation indicated that decreased rainfall of April and May, would lead to unfavorable moisture conditions. Unlike, increased precipitation in November could improve the moisture conditions at the time of sowing which favors greater yield.

کلیدواژه‌ها [English]

  • Biase correction
  • CMIP5 models
  • EDCDFm
  • Scenario
  • Wheat

Altinsoy, H., Kurt, C., Kurnaz, M. L. 2013. Analysis of the Effect of Climate Change on the Yield of Crops in Turkey Using a Statistical Approach, in: Helmis, C.G., Nastos, P.T. (Eds.), Advances in Meteorology, Climatology and Atmospheric Physics SE  - 53, Springer Atmospheric Sciences. Springer Berlin Heidelberg, pp. 379–384.

Angulo, C., Rötter, R., Lock, R., Enders, A., Fronzek, S., Ewert, F. 2013. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology, 170: 32–46.

Azizi, H., Nezami, A., Nassiri Mahallati, M., Khazaie, H. R. 2007. Evaluation of cold tolerance in wheat (Triticum Aestivum L.) cultivars under controlled conditions. Iranian Journal of Field Crops Research, 5(1): 109-120. (In Farsi)

Bannayan, M., Sanjani, S., 2011. Weather conditions associated with irrigated crops in an arid and semi arid environment. Agricultural and forest meteorology, 151(12): 1589–1598.

Bannayan,   M.,   Sanjani,   S.,    Alizadeh,   A., Lotfabadi, S. S., Mohamadian, A. 2010. Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research, 118(2): 105–114.

Bergjord, A. K., Bonesmo, H., Skjelvåg, A. O. 2008. Modelling the course of frost tolerance in winter wheat: I. Model development. European journal of agronomy, 28(3): 321–330.

Berry, P. M., Sterling, M., Baker, C. J., Spink, J., Sparkes, D. L. 2003. A calibrated model of wheat lodging compared with field measurements. Agricultural and Forest Meteorology, 119(3): 167–180.

Caprio, J. 1966. A statistical procedure for determining the association between weather and non-measurement biological data. Agricultural Meteorology, 3(1): 55–72.

Caprio, J. M., Quamme, H. A. 1999. Weather conditions associated with apple production in the Okanagan Valley of British Columbia. Canadian Journal of Plant Science, 79(1): 129–137.

Caprio, J. M., Quamme, H. A. 2006. Influence of weather on apricot, peach and sweet cherry production in the Okanagan Valley of British Columbia. Canadian journal of plant science 86(1): 259–267.

Daccache, A., Weatherhead, E. K., Stalham, M. A., Knox, J. W. 2011. Impacts of climate change      on irrigated potato production in a humid climate. Agricultural and Forest Meteorology, 151(12): 1641–1653.

Egli, D.B., 2008. Soybean yield trends from 1972 to 2003 in mid-western USA. Field Crops Research, 106(1): 53–59.

Fuhrer, J. 2003. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems and Environment, 97(1–3): 1–20.

Gent, M. P. N., Kiyomoto, R. K. 1997. Physiological and agronomic consequences of Rht genes in wheat. Journal of crop production, 1(1): 27–46.

Gourdji, S. M., Sibley, A. M., Lobell, D. B. 2013. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environmental Research Letters, 8(2): 24041.

Hansen, J. W., Jones, J. W. 2000. Scaling-up crop models for climate variability applications. Agricultural Systems, 65(1): 43–72.

Hartkamp, A. D., White, J. W., Hoogenboom, G. 1999. Interfacing Geographic Information Systems with Agronomic Modeling: A Review Presented at Annu. Meet. ASA, 89th, Anaheim, CA, 26–31 Oct. 1997.

Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M., Cox, P. M. 2013. No increase in global temperature variability despite changing regional patterns. Nature, 500(7462): 327–330.

Jenner, C.F., 1994. Starch synthesis in the kernel of wheat under high temperature conditions. Functional Plant Biology 21(6), 791–806.

Kersebaum, K. C., Lorenz, K., Reuter, H. I., Schwarz, J., Wegehenkel, M., Wendroth, O. 2005. Operational use of agro meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes. Physics and Chemistry of the Earth, 30(1-3): 59–67.

Kroebel, R., Li, C., Qian, B., Worth, D. E., McConkey, B. G., Drury, C. F. 2013. Assessing the effects of climate change on crop production and GHG emissions in Canada. Agriculture, Ecosystems and Environment, 179(0): 139–150.

Kutcher, H. R., Warland, J. S., Brandt, S. A. 2010. Temperature and precipitation effects on canola yields in Saskatchewan, Canada. Agricultural and Forest Meteorology, 150(2): 161–165.

Lal, H., Hoogenboom, G., Calixte, J. P., Jones, J. W., Beinroth, F. H. 1993. Using crop simulation models and GIS for regional productivity analysis. Transactions-American Society Of Agricultural Engineers, 36 (1): 175-184.

Licker, R., Kucharik, C. J., Doré, T., Lindeman,    M. J., Makowski, D. 2013. Climatic impacts on winter wheat yields in Picardy, France and Rostov, Russia: 1973–2010. Agricultural and Forest Meteorology, 176(0): 25–37.

Liu, C., Allen, R. P. 2013. Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environmental Research Letters 8(3): 34002, doi:10.1088/1748-9326/8/3/034 002.

Lobell, D. B., Asseng, S. 2017. Comparing estimates of climate change impacts from process-based and statistical crop models. Environmental Research Letters, 12(1): 15001, doi:10.1088/1748-9326/015001.

Lobell, D. B., Burke, M. B. 2010. On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150(11): 1443–1452.

Luo, Q., Bellotti, W., Williams, M., Bryan, B. 2005. Potential impact of climate change on wheat yield in South Australia. Agricultural and Forest Meteorology, 132(3-4): 273–285.

Lv, Z., Liu, X., Cao, W., Zhu, Y. 2013. Climate change impacts on regional winter wheat production in main wheat production regions of China. Agricultural and Forest Meteorology, 171–172: 234–248.

Malik, A. I., Colmer, T. D., Lambers, H., Setter, T. L., Schortemeyer, M. 2002. Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytologist, 153(2): 225–236.

Malone, R. W., Meek, D. W., Hatfield, J. L., Mann, M. E., Jaquis, R. J., Ma, L. 2009. Quasi-biennial corn yield cycles in Iowa. Agricultural and Forest Meteorology, 149(6–7): 1087–1094.

McCaig, T. N., 1997. Temperature and precipitation effects on durum wheat grown in southern Saskatchewan for fifty years. Canadian journal of plant science, 77(2): 215–223.

McMaster, G., Wilhelm, W. 2003. Phenological responses of wheat and barley to water and temperature: improving simulation models. The Journal of Agricultural Science, 141(2): 129–147.

Misra, A. K. 2014. Climate change and challenges of water and food security. International Journal of Sustainable Built Environment, 3(1): 153–165.

Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V, Ban, T., Hodson, D., Dixon, J.M., Iván Ortiz-Monasterio, J., Reynolds, M.     2008. Climate change: Can wheat beat the heat? Agriculture, Ecosystems and Environment, 126(1–2): 46–58.

Porter, J. R., Gawith, M. 1999. Temperatures and the growth and development of wheat: a review. European Journal of Agronomy, 10(1): 23–36.

Porter, J.R., Semenov, M.A., 2005. Crop  responses to climatic variation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1463): 2021–2035.

Priya, S., Shibasaki, R. 2001. National spatial crop yield simulation using GIS-based crop production model. Ecological Modelling, 136(2–3): 113–129.

Qian, B., De Jong, R., Gameda, S., Huffman, T., Neilsen, D., Desjardins, R., Wang, H., McConkey, B. 2013. Impact of climate change scenarios on Canadian agroclimatic indices. Canadian Journal of Soil Science, 93(2): 243–259.

Rahmstorf, S., Coumou, D. 2011. Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences, 108(44): 17905–17909.

Rosenzweig, C., Tubiello, F.N. 1996. Effects of changes in minimum and maximum temperature on wheat yields in the central US A simulation study. Agricultural and Forest Meteorology, 80(2–4): 215–230.

 Ryan, M.G. 1991. Effects of climate change on plant respiration. Ecological Applications, 1(2): 157–167.

Sabziparvar, A. A., Torkaman, M., Maryanaji, Z. 2013. Investigating the Effect of Agroclimatic Indices and Variables on Optimum Wheat Performance (Case study: Hamedan Province). Journal of Water and Soil, 26)6): 1554-1567. (In Farsi)

Sanchez, P.A. 2000. Linking climate change research with food security and poverty reduction in the tropics. Agriculture, Ecosystems & Environment, 82(1–3): 371–383.

Shokouhi, M., Sanaei Nejad, S. 2014. Determination of Weather Conditions Associated With the Production of Rainfed Barley Crop (Case Study: East Azerbaijan). Journal of Agroecology, 6(3): 634–644. (In Farsi)

Shokouhi, M., Sanaei Nejad, S., Bannayan Aval, M. 2018. Evaluation of Simulations of Precipitation and Temperature from CMIP5 Climate Models in Regional Climate Change Studies (Case Study: Major Rainfed Wheat-Production Areas in Iran). Journal of Water and Soil, 32(5): 1013-1027. (In Farsi)

Sinclair, T. R., Jamieson, P. D. 2006. Grain number, wheat yield, and bottling beer: An analysis. Field Crops Research, 98(1), 60–67.

Slafer, G. A. 2003. Genetic basis of yield as viewed from a crop physiologist’s perspective. Annals of Applied Biology, 142(2): 117–128.

Tao, F., Yokozawa, M., Xu, Y., Hayashi, Y., Zhang, Z. 2006. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agricultural and Forest Meteorology, 138(1–4): 82–92.

Tashiro, T., Wardlaw, I. A. N. F. 1989. A Comparison of the Effect of High Temperature on Grain Development in Wheat and Rice. Annals of Botany, 64(1): 59–65.

Tavakoli, A. R. 2012. Single irrigation and sowing date for rainfed barley in Maragheh region and estimation of production functions. Journal of Agricultural Engineering Research, 13(2): 39-56. (In Farsi)

Ugarte, C., Calderini, D. F., Slafer, G. A. 2007. Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crops Research, 100(2–3): 240–48.

Wang, J., Huang, J., Yan, T. 2013. Impacts of Climate Change on Water and Agricultural Production in Ten Large River Basins in China. Journal of Integrative Agriculture, 12(7): 1267–1278.

Wang, M., Li, Y., Ye, W., JF, B., Yan, X. 2011. Effects of climate change on maize production, and potential adaptation measures: a case study in Jilin Province, China. Climate Research, 46(3): 223–242.

Wardlaw, I. F., Sofield, I., Cartwright, P. M. 1980. Factors limiting the rate of dry matter accumulation in the grain of wheat grown at high temperature. Functional Plant Biology, 7(4): 387–400.

Wassenaar, T., Lagacherie, P., Legros, J. P., Rounsevell, M. D. A. 1999. Modelling wheat yield responses to soil and climate variability at the regional scale. Climate Research, 11(3): 209–220.

Wheeler, T. R., Hong, T. D., Ellis, R. H., Batts, G. R., Morison, J. I. L., Hadley, P. 1996. The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum L.) in response to temperature and CO2. Journal of Experimental Botany, 47(5): 623–630.

Yau, S. K., Nimah, M., Farran, M. 2011. Early sowing and irrigation to increase barley yields and water use efficiency in Mediterranean conditions. Agricultural Water Management, 98(12): 1776–1781.

Yazdanshenas, L., Moghadasi, R., Yazdani, S. 2011. A Model for the Wheat Market in Iran. International Journal of Agricultural Science and Research, 2(2): 49–55.

Zhang, Y., Kendy, E., Qiang, Y., Changming, L., Yanjun, S., Hongyong, S. 2004. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Agricultural Water Management, 64(2): 107–122.  

Zinyengere, N., Crespo, O., Hachigonta, S. 2013. Crop response to climate change in southern Africa: A comprehensive review. Global and Planetary Change, 111: 118–126.