روشی پیشنهادی برای مدلسازی عدم قطعیت در تخمین‌های هیدروکلیماتولوژی با تأکید بر دوره‌های خشکسالی

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

چکیده

بسیاری از تکنیک‌ها و روش‌هایی که در برنامه‌ریزی و مدیریت کشاورزی بر مبنای تغییرات و نوسانات اقلیمی وجود دارد، ارتباط مستقیم یا غیر مستقیم با تخمین‌های هیدروکلیماتولوژیک دارد. منظور از تخمین هیدروکلیماتولوژی تعیین و اعلام وقوع شرایطی در مکان و زمان خاص است که می‌تواند شامل پدیده‌هایی نظیر ترسالی یا خشکسالی شود. پیشرفت‌های بیشتر در تخمین‌های هیدروکلیماتولوژیک منوط به شناخت بیشتر ارتباط پدیده‌های اقلیمی و رویدادهای هیدرولوژیکی، بهبود وتوسعه مدل‌ها یا پیشنهاد مدل‌های جدید می‌باشد. ارائه یک مدل تخمین هیدروکلیماتولوژیک که دارای خصوصیات مدلسازی همبستگی غیرخطی بین سیگنال‌ها و متغیرهای هیدرولوژیکی، مدلسازی سری‌های غیر ایستا و ارائه پیش‌بینی‌های احتمالاتی باشد، می‌تواند یک قدم به جلو در مطالعات انجام شده در این زمینه باشد. در این راستا مدلی بر اساس تحلیل‌های همبستگی و مدلسازی آماری در قالب این مقاله ارائه شده و قابلیت آن در مقایسه با یکی از مدل‌های مرسوم آمار ناپارامتری (رگرسیون نزدیک‌ترین همسایه) در تخمین نقطه‌ای و احتمالاتی سنجیده می‌شود. یکی از مهمترین چالش‌ها در انجام تخمین‌های هیدروکلیماتولوژیک، انعکاس عدم قطعیت‌ها در خروجی‌ها است که در روش ارائه شده به آن پرداخته شده است. نوآوری این تحقیق در ارائه روشی ساده، اما کارآمد برای تخمین‌های هیدروکلیماتولوژیک با انعکاس عدم قطعیت‌ها است. مطالعه موردی تحقیق تخمین آوردهای رودخانه زاینده‌رود در شرایط نرمال و خشکسالی‌ها می‌باشد. نتایج نشان دهنده کارایی روش پیشنهادی در مقایسه با روش‌های رگرسیون ناپارامتری است.
 

کلیدواژه‌ها


عنوان مقاله [English]

A proposed method for uncertainty modeling in hydroclimatological estimation with emphasis on drought events

نویسنده [English]

  • Sh. Araghinejad
Assistant Professor, Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj
چکیده [English]

Most techniques and methods in the agricultural planning and management based on the climate variation and climate change are implicitly or explicitly dependent on the hydrocliamtological estimations. Hydroclimatolgical estimation is actually the determination and warning of specific situations in a certain time and place such as drought and floods. Further improvements in the modeling for those estimations are up to the growing knowledge on the interaction between climatic and hydrological events as well as developing new models and improvement of existing ones. Presenting a hydrocliamtological model to be able to map the nonlinear relationship between climate signals and hydrological models; to model the non stationary time series; providing probabilistic estimation could be a significant contribution. A model is presented in this paper based on the correlation analysis and statistical modeling which is compared with a conventional nonparametric model (nearest neighborhood) in point and interval estimation. One of the important challenges in hydrocliamtological estimation is to calculate estimation uncertainty in which the proposed method deals with it. The contribution of this paper is to provide a simple but efficient method for hydrocliamtological estimation in an uncertain environment. The case study of this research is forecasting of streamflow of Zayandeh-rud River in drought and normal situations. The results demonstrate the supremacy of the proposed model in comparison with the conventional models.

کلیدواژه‌ها [English]

  • Hydroclimatological estimation
  • Uncertainty
  • geostatistical analysis
  • K-nearest neighborhood

خوش اخلاق، ف. 1377. پدیده انسو و تأثیر آن بر رژیم بارش ایران. فصلنامه تحقیقات جغرافیایی، شماره پیاپی 51، سال 13 شماره 4.

کیانی‌پور، م. 1379. بررسی سینوپتیکی پدیده النینو و ارتباط آن با ناهنجاری بارش های جنوب و جنوب غرب ایران. پایان نامه کارشناسی ارشد رشته جغرافیای طبیعی (هیدرواقلیم)، دانشگاه تربیت مدرس، تهران.

مدرس‌پور، آ. 1377. ناهنجاری‌های اقلیمی ایران ENSO. پایان نامه کارشناسی ارشد فیزیک دریا، دانشگاه آزاد اسلامی واحد شمال، تهران.

Box, G. E. P., Jenkins, F. M. 1976.  Time Series Analysis: Forecasting and Control. Oakland, CA: Holden-Day, 2nd ed.

Brockwell, P. J., Davis, R. A. 1987. Time series theory and Methods”, Springer-Verlag, New York.

Coulibali, P., Anctil, F., Bobée, B. 2000. Daily streamflow forecasting using  neural networks with stopped training approach. J. Hydrol., 230: 244-257.

Day, G. N. 1983. Extended Streamflow Forecasting Using NWSRFS. J. Water Res. Plan. Manag., 111(2):157-170.

Garen, D. C. 1992.  Improved techniques in regression-based streamflow volume forscating. J. Water Res. Plan. Manag., 118 (6): 654-670.

Hsu, K. L., Gupta, H. V., Sorooshian, S. 1999. Artificial neural networks modeling of rainfall-runoff process, Water Resour. Res., 31(10): 2517-2530.

Karlsson, M., Yakowitz, S.1987. Nearest-neighbor methods for nonparametric rainfall-runoff forecasting, Water Resour. Res., 23(7):1300-1308.

Krieg, D. G. 1966. Two-dimensional wighted moving average trend surfaces for ore-evaluation. J. South Afr. Inst. Min. Metall., 66: 13-38.

Lall, U., Sharma, A. 1996. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour. Res., 32(3): 679-694.

Potts, J. M., Folland, C. K., Jollife, I. T., Sexton, D. 1996. Revised LEPS scores for assessing climate model simulations and long-range forecast. J. Climatol., 9: 34-53.

Piechota, T. C., Chiew, F. H. S., Dracup, J. A., McMahon, T. A. 2001. Development of exceedence probability streamflow forecast. J. Hydrol.Eng., 6(1): 20-28.

Webster, R., Oliver, M. A. 2001. Geostatistics for Environmental Scientists. John Wiley & Sons, Ltd., New York, NY.