مطالعه تطبیقی دقت مدل‌های زمین‌آماری و رگرسیونی جهت پهنه‌بندی دما در مرکز و شمال ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران

3 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

دمای هوا از مهم‌ترین متغیرهای مورد نیاز در مطالعات اقلیم‌شناسی کشاورزی است. داده‌های دیدبانی شده دما ماهیت نقطه‌ای دارند و جهت برآورد منطقه‌ای این کمیت نیاز به کاربرد روش‌های درون‌یابی است که تغییرات دما بر حسب ارتفاع و عرض جغرافیایی را برآورد کنند. در این پژوهش، کارایی روش­های کریجینگ، کوکریجینگ، رگرسیون وزن­دار جغرافیایی و رگرسیون چندمتغیره خطی برای پهنه‌بندی میانگین ماهانه دما 56 ایستگاه همدیدی واقع در مرکز و شمال ایران، مورد ارزیابی قرارگرفته است. تحلیل آماری نتایج نشان داد که رگرسیون وزن‌دار جغرافیایی در ماه دسامبر بیش‌ترین اختلاف را با دیگر روش‌های مورد مطالعه دارد به طوری که ریشه میانگین مربعات خطا در این روش برابر 83/0 درجه سانتی‌گراد می­باشد، در حالی که این مقدار در روش کوکریجینگ که در رتبه بعدی قرار دارد برابر با 38/2 درجه سانتی‌گراد است. کم‌ترین میانگین مقادیر RMSE تمام ماه‌های سال، متعلق به روش رگرسیون وزن­دار جغرافیایی به میزان 2/1 درجه سانتی‌گراد و پس از آن به ترتیب روش­های رگرسیون چند متغیره خطی (24/2 درجه سانتی‌گراد)، کریجینگ (52/2 درجه سانتی‌گراد) و کوکریجینگ (86/2 درجه سانتی‌گراد) در اولویت‌های بعدی قرار دارند، لذا روش وزن‌دار جغرافیایی برای پهنه­بندی دما در این منطقه، مناسب‌تر می‌باشد. این رهیافت، به دلیل در نظر گرفتن گرادیان­های محلی ارتفاعی، مقادیر دما در مناطق مرتفع فاقد ایستگاه هواشناسی را دقیق‌تر پیش‌بینی می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Comparative study of geo-statistical and multivariate models for air temperature interpolation in central and northern regions of Iran

نویسندگان [English]

  • Z. Aghashariatmadary 1
  • M. Ettehadi 2
  • kh. Ghorbani 3
1 Assistant Professor, Irrigation & Reclamation Engineering Department, University of Tehran, Karaj, Iran
2 Graduated student of agrometeorology, Irrigation and Reclamation Engineering Department, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Associate Professor of Agrometeorology, Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Air temperature is one of the major variables required for agroclimatic classifications. For spatial zoning of temperature point observations, the interpolation approaches in which the horizontal and vertical gradients are included may be applied. In this research, the skill of Kriging, Co-Kriging, geographically weighted regression and Linear Multivariate Regression was evaluated for the interpolation of the monthly mean temperature values using the data of 56 synoptic stations located in the northern and central regions of Iran. The results of the statistical analysis indicated that the geographically weighted regression have the greatest difference with the other methods in month of December, with root mean square error (RMSE) equal to 0.83 °C, Based on the RMSE values of all months, the geographically regression method (with RMSE of 1.26°C) is the most suitable approach for temperature spatial zoning in this region. and then linear multiple regression method with RMSE of 2.24 °C, Kriging with RMSE of 2.52 °C and Cokriging with highest RMSE of 2.86 °C were ranked second to fourth, respectively. Besides, it is concluded that for high altitude areas where almost no weather station exist, the geographically weighted regression method provided the most accurate interpolated data of the air temperature.

کلیدواژه‌ها [English]

  • Geographically Weighted Regression
  • local interpolation
  • Multivariable regression
  • Temperature

Abtew, W., Obeysekera, J., Shin, G. 1993. Spatial Analysis for monthly rainfall in south Florida. Water Resources Bulletin, 29(2): 179-188.

Benavides, R., Montes, F., Rubio, A., Osoro, K. 2006. Geostatistical modelling of air temperature in a mountainous region of Northern Spain. Agricultural and forest meteorology, 146: 173-188.

Bostan, P. A., Akyürek, Z. 2007. Exploring the mean annual precipitation and temperature values over Turkey by using environmental variables. InISPRS Joint Workshop “Visualization and Exploration of Geospatial Data”. University of Applied Sciences, Stuttgart.

Fotheringham, A. S., Brunsdon, C., Charlton, M. 2003. Geographically weighted regression: the analysis of spatially varying relationships. John Wiley and Sons, 268 pages.

Georganos, S., Abdi, A. M., Tenenbaum, D. E., Kalogirou, S. 2017. Examining the NDVI-rainfall relationship in the semi-arid Sahel using geographically weighted regression. Journal of Arid Environments, 146: 64-74.

Ghorbani, Kh. 2013. Geographically Weighted Regression: A Method for Mapping Isohyets in Gilan Province. Journal of water and soil, 26(3): 743-752. (In Farsi)

Ghorbani, Kh., Aghashariatmadari, Z. 2014. The Effect of Local Gradients on Increasing of Climatic Data Interpolation Accuracy by Geographically Weighted Regression (Case Study: Air Temperature and Relative Humidity). Journal of Watershed Management Research, 5(1): 132-143. (In Farsi)

Gundogdu, I. B., Esen, O. 2010. The importance of secondary variables for mapping of meteorological data. In International Conference on Cartography and GIS. 12-15 June. Nessebar, Bulgaria.  15-20.

Hevesi, J. A., Istok, J. D., Flint, A. L. 1992. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: structural analysis. Journal of applied meteorology, 31(7): 661-676.

Johnson, B.  A., Scheyvens,  H., Khalily,  M.  B., Onishi, A. 2019. Investigating the relationships between climate hazards and spatial accessibility to microfinance using geographically-weighted regression. International Journal of Disaster Risk Reduction, 33: 122-130.

Madani, H. 1994. Geostatistical basics. Amirkabir University publication. (In Farsi).

Mehdizadeh, H. 2002. Evaluation of Geostatistical methods to estimate temperature and rainfall in Ourmieh lake basin. Master's thesis of Agricultural Meteorology. University of Tehran. (In Farsi)

Mennis, J. 2006. Mapping the results of geographically weighted regression. The Cartographic Journal, 43(2): 171-179.

Mesdaghi, M. 2004. Regression methods for ressearch in agriculture and natural resources. Imam Reza University, Mashhad. 290. (In Farsi)

Nadi, M. 2010. Using the Various Interpolation Techniques of Climatic Data for Determining the Most Important Factors Affecting the Trees Growth in the Elevated Areas of Chaharbagh, Gorgan. Master's thesis of Agricultural Meteorology. University of Tehran. (In Farsi)

Nalder, I. A., Wein, R. W. 1998. Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and forest meteorology, 92(4): 211-225.

Rahimi Bandarabadi, S. 2000. Investigating the Application of Geostatistic Methods for Estimating Precipitation in Arid and Semi-Arid Areas of Southeast of Iran. Master's thesis of desertification. University of Tehran. (In Farsi)

Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region. Economic geography, 46(sup1): 234-240.

Zhai, L., Li, S., Zou, B., Sang, H., Fang, X., Xu, S. 2018. An improved geographically weighted regression model for PM2. 5 concentration estimation in large areas. Atmospheric Environment, 181: 145-154.

Zhou, Q., Wang, C., Fang, S. 2018. Application of geographically weighted regression (GWR) in the analysis of the cause of haze pollution in China. Atmospheric Pollution Research (In Press). https://doi.org/10.1016/j.apr.2018.12.012