ارزیابی برونداد دمای فصلی مدل های پیش بینی همادی آمریکای شمالی در حوضه های آبریز درجه دو ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری مهندسی منابع آب، پردیس ابوریحان، دانشگاه تهران، پاکدشت، ایران

2 دانشیار، پردیس ابوریحان، دانشگاه تهران، پاکدشت، ایران

3 دانشیار، موئسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

4 مدیر ارشد مطالعات اقلیمی، موئسسه پژوهشی بین‌المللی برای اقلیم و جامعه، موئسسه زمین، دانشگاه کلمبیا واقع در نیویورک، ایالات متحده آمریکا

چکیده

هدف از این پژوهش، ارزیابی برونداد دمای سامانه­های پیش­بینی فصلی اقلیمی در پهنه کشور ایران است. این تحلیل­ها بر اساس مدل­های گردش کلی جفت­شده جو-اقیانوس انجام شده است که در همادی مدل­های آمریکای شمالی مورد استفاده قرار گرفته­اند. مهارت هر یک از مدل­های آمریکای شمالی با آغازگری­های مختلف و در سه زمان انتظار صفر، یک و دو (ماه) برای سه فصل هدف (اکتبر-دسامبر)، (دسامبر-فوریه) و (فوریه-آوریل) بررسی شده است. بدین منظور از محصول دمای پایگاه CRU (دو متری سطح زمین) در دوره (1982-2010) به عنوان داده مرجع مشاهداتی استفاده شد. معیارهای صحت­سنجی قطعی شامل همبستگی پیرسون، میانگین خطا و ریشه مربعات خطا است که برای ارزیابی پیش­بینی­های فصلی محاسبه شده­اند. نمره ROC نیز به عنوان یک شاخص طبقه­بندی برای کلیه مدل‌ها در شرایط زیر نرمال و بیش از نرمال محاسبه شده است. نتایج نشان می­دهد ضریب همبستگی بین سامانه­های پیش­بینی­ فصلی و پایگاه CRU در فصل FMA بیشتر از دو فصل DJF و OND است. مهارت مدل CFSv2 در جنوب کشور در OND قابل ملاحظه (همبستگی بالای 9/0 و ROC بیش از 7/0) می­باشد. الگوی اریبی بر اساس موقعیت جغرافیایی در فصول هدف تقریباً مشابه است. کمترین تغییرات اریبی از لحاظ مقدار، مربوط به مدل GFDL-FLOR-B01 می­باشد. با افزایش زمان انتظار، مهارت سامانه­های پیش­بینی فصلی در تعدادی از حوضه­های آبریز کشور کاهش می­یابد. با توجه به اریبی قابل­ملاحظه تعدادی از مدل­های همادی آمریکای شمالی، می­توان از روش­های پس­پردازش مناسب برای حذف اریبی برونداد این مدل­ها استفاده نمود. هم­چنین می­توان با توسعه سامانه­های همادی چندمدلی در سطح حوضه­های آبریز در فصول مهم از منظر بخش کشاورزی و منابع آب بهره گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of NMME seasonal temperature forecasts over Iran’s river basins

نویسندگان [English]

  • H. Najafi 1
  • A. R. Massah Bavani 2
  • P. Irannejad 3
  • A. W. Robertson 4
1 Ph. D. in Water Resources Engineering, College of Aburaihan, University of Tehran, Iran
2 Associate Professor, College of Aburaihan, University of Tehran, Iran
3 Associate Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Iran
4 Head of Climate Group, International Research Institute for Climate and Society (IRI), Erath Institute, Columbia University in New York, USA
چکیده [English]

The aim of this research is to evaluate the temperature outputs of climate forecasting systems over Iran. The analysis is provided based on Atmosphere-Ocean Coupled General Circulation Models from North America Multi Model Ensemble (NMME). The skill of NMME individual models are evaluated in different initializations, of lead times (0-month, 1-month and 2-month) for October-December (OND), December-February (DJF), and February-April (FMA) target seasons. Temperatures at 2m from Climate Research Unit (CRU) dataset are used as reference observation over 1982-2010. Pearson correlation, Mean Error and Root Mean Squared Error are calculated as deterministic verification criteria for seasonal forecast verification. In addition, Relative Operating Characteristic (ROC) score is calculated as a categorical measure for below-normal and above-normal conditions. The results suggest that correlation between NMME forecasts and CRU is higher in FMA (compared to DJF and OND). CFSv2 has a significant skill in the south of Iran in FMA (correlation ≥ 0.9, ROC≥ 0.7). Spatial pattern of NMME biases is similar in three target seasons. GFDL-FLOR-B01 bias is lowest among all evaluated NMME models. At longer lead times; skill of some models is dropped for forecasting temperature in some river basins in Iran. Given large temperature biases found in NMME individual models, applying Model Output Statistics is recommended. Developing Multi-model Ensemble (MME) can also help to improve seasonal forecasts in Iran’s river basins for agriculture and water resources management applications.

کلیدواژه‌ها [English]

  • Seasonal Forecasting of Temperature
  • North American Multi-Model Ensemble (NMME)
  • Iran’s river basins
  • Atmosphere-Ocean Coupled General Circulation Models
  • Iran

Amini Rakan, A., Haghighatjou P., Khalili, K., Behmanesh, J. 2015. Evaluation the performance of genetic programming in modeling mean monthly temperature in different climates of Iran. Journal of Agricultural Meteorology, 3(1): 13- 24. (In Farsi)

Becker, E., Van Den Dool, H. 2016. Probabilistic seasonal forecasts in the North American Multimodel Ensemble: A baseline skill assessment. Joutnal of Climate, 29(8): 3015-3026.

Gent, P. R., Yeager, S. G., Neale, R. B., Levis, S., Bailey, D. A. 2010. Improvements in a half degree atmosphere/land version of the CCSM. Climate Dynamics, 34: 819–833.

Chen, L., Van den Dool, H., Becker, E., Zhang, Q. 2017. ENSO precipitation and temperature forecasts in the North American Multimodel Ensemble: Composite analysis and validation. Joutnal of Climate, 30: 1103–1125.

Fallah Ghalhari, Gh., Asadi, M., Dadashi Roudbari, A. 2015. Determination of suitable regions for wheat cultivation in Fars Province. Journal of Agricultural Meteorology, 3(2): 68-73. (In Farsi)

 Ghasemi A R. 2017. Modeling feasibility and prediction of minimum and maximum temperature in Iran by bettitt and Holt-Winters methods. Researches in Geographical      Sciences, 16 (43) :7-24. (In Farsi)

Ghasemi, A. R., Khalili, D. 2008. The effect of the North Sea-Caspian pattern (NCP) on winter temperatures in Iran. Theoretical and Applied Climatology, 92: 59–74.

Harris, I., Jones, P., Osborn, T. J., Lister, D. H. 2014. Updated high-resolution grids of monthly climatic observations– the CRU TS3.10 Dataset. Journal of Climatology, 36: 623–642.

Halabian, A., Mohamadi, B. 2012. The relation of monthly temperature of some sample stations in Iran with different ENSO indices. Geographic Space, 12(38): 1-19. (In Farsi)

Irannejad, P., Ahmadi-Givi, F., Nikouei, N. 2016. A study of winter temperature anomalies in Iran by using the NCEP/NCAR reanalysis dataset. Iranian Journal of Geophysics, 10(4):12-27. (In Farsi)

Kamali, Gh., Mollaei, P., Behyar, M. B. 2010. Development of Zanjan Province Dry Land Wheat Atlas by using Climatic Data and GIS. Journal of Water and Soil, 24 (5): 894-907

Khosravi, M., Mesgari E. 2016. Spatial Analysis of Relationship between Teleconnection Patterns and Monthly Temperature of Northwest of Iran. Town and Country Planning, 6(21): 203-214. (In Farsi)

Kirtman, B. P., Min, D., Infanti J. M. 2014. The North American Multimodel Ensemble phase-1 seasonal-to-interannual prediction; phase-2 toward   developing  intraseasonal  prediction.

     Bulletin of the American Meteorological Society, 585-601.

Marofi, S., Saghaei, S.,  Ershadfath, F., Khatar B. 2015. Evaluating Time Series Models to Estimate Monthly Temperature of Iran’s Old Synoptic Stations During 1977-2005. Water and Soil Science, 24(4): 215-226. (In Farsi)

Miri, M., Azizi, G., Mohamadi, H., Pourhashemi M. 2017. Evaluation statistically of temperature and precipitation datasets with observed data in Iran. Iranian Journal of Mangement Science, 10 (35) :39-50. (In Farsi)

Molavi-Arabshahi, M., Arpe, K., Leroy, S. A. G. 2016. Precipitation and temperature of the southwest Caspian Sea region during the last 55 years: their trends and teleconnections with large-scale atmospheric phenomena. International Journal of Climatology, 36: 2156–2172.

Merryfield, W. J., Lee, W-S., Boer, G. J., Kharin, V. V., Scinocca, J. F., Flato, G. M., Ajayamohan, R. S., Fyfe, J. C. 2013. The Canadian seasonal to interannual prediction system. Part I: Models and Initialization.  Monthly Weather Review, 141: 2910-2945.

Najafi, H., Massah Bavani A. R., Wanders N., Wood E. F., Irannejad P., Robertson, A. 2017. Developing Multi-model Ensemble for Precipitation and Temperature Seasonal Forecasts: Implications for Karkheh River Basin in Iran. Geophysical Research Abstracts, Vol. 19, EGU2017-18597-3, 2017 EGU General Assembly 2017, Vienne, Austria.

Najafi., H., Massah Bavani, A. R., Irannejad, P., Robertson, A. W. 2018a. Application of North American Multi-Model Ensemble for Iran’s seasonal Precipitation. Iran Water Resources Research, 13(4): 28-38. (In Farsi)

Najafi., H., Massah Bavani, A. R., Irannejad, P., Robertson, A. W. 2018b. Developing Real-time Multi-model Ensemble and Downscaling of Seasonal Precipitation Forecast Systems: Application of Canonical Correlation Analysis. Journal of the Earth and Space Physics, 44(1): 245-264. (In Farsi)

Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., Zhang, M. 2013. The mean climate of the Community Atmosphere Model (CAM4) in forced SST  and fully coupled experiments. Journal of Climate, 26: 5150–5168.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H.Y., Iredell, M., Ek, M. 2014. The NCEP climate forecast system version 2. Journal of Climate, 27(6): 2185-2208.      

Slater, L., Villarini, G., Bradley, A. 2017. Evaluation of the skill of North-American multi-model ensemble (NMME) global climate models in predicting average and extreme precipitation and temperature over the continental USA. Climate Dynamics, In Press.

Shukla, S., Roberts, J., Hoell, A., Funk, C. C., Robertson, F., Kirtman, B. 2016. Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of anomalous hydrometeorological events over East Africa. Clim Dynamics, 1-17.

Sobhani, B. 2014. Influence of NAO to minimum, average and maximum temperature in th southwest Iran.  researches in Geographical Sciences, 14(33): 75-90.

Tian, D., Martinez, C. J., Graham, W. D., Hwang, S. 2014. Statistical downscaling multimodel forecasts for seasonal precipitation and surface temperature over the southeastern United States. Journal of Climatology, 27(22): 8384-8411.

Vernieres, G., Rienecker, M., Kovach, R., Keppenne, C. H. L.  2012. The GEOS-iODAS: Description and evaluation. Technical report series on global modeling and data assimilation, TM-2012-104606, 30:1-61.

Yuan, X. 2016. An experimental seasonal hydrological forecasting system over the Yellow River basin–Part 2: The added value from climate forecast models.  Hydrology and Earth System Science, 20(6): 2453-2466.

Zareabayneh, H., Bayat Varkeshi, M. 2011. Effect of ENSO Phenomenon on Monthly Seasonal Temperature Variations of Country Half South. Physical Geography Research, 44(2): 67-84. (In Farsi)

Zhang, S., Harrison, J., Rosati, M. J. Wittenberg, A. T. 2007. System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Monthly Weather Review, 135: 3541–3564.