بررسی اثر تغییر اقلیم بر ویژگی‌های دوره‌های ترسالی و خشکسالی‌ (مطالعه موردی: ایستگاه‌های ارازکوسه و تمر در استان گلستان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد‌کاووس

2 استادیار گروه مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد‌کاووس

چکیده

انتظار می‌رود تغییر اقلیم با تغییر مقدار و توزیع زمانی بارش سبب تغییر احتمال خشکسالی و ترسالی‌ها در بعضی مناطق ‌شود. این اثرات در مناطقی مانند استان گلستان با اقلیم‌های متفاوت، بارزتر است. در این پژوهش به منظور بررسی پیامدهای تغییر اقلیم در دو ایستگاه باران‌سنجی با اقلیم متفاوت، اقدام به تجزیه و تحلیل شدت، تداوم و فراوانی ترسالی‌ها و خشکسالی‌ها دردوره پایه (1986-2005) و آینده شد. با استفاده از مدل ریزمقیاس‌نمایی SDSM با در نظر گرفتن مدل گردش عمومی جو بر اساس گزارش پنجم هیئت بین‌الدول (AR5)  و سناریوهای انتشار 6/2RCP، 5/4RCP و 5/8RCP، سری‌های زمانی بارش در دوره آینده اول (2031 تا 2050) و دوره آینده دوم (2051 تا 2070) پیش‌گویی شد. بعد از اطمینان از کارایی مدل در بازتولید داده‌های بارش در دوره پایه، مقادیر شاخص‌های بارش استاندارد و بارش استاندارد نسبی در پنجره‌های زمانی مختلف محاسبه و با شمارش تعداد ماه‌های طبقات ترسالی و خشکسالی و همچنین استفاده از زنجیره مارکف مرتبه اول، ویژگی‌های خشکسالی آینده نسبت به دوره پایه مقایسه گردید. نتایج نشان داد که در دو ایستگاه ارازکوسه و تمر احتمال خشکسالی‌ها در آینده افزایش می‌یابد. همچنین، با افزایش پنجره زمانی بارش استاندارد، تداوم تمام طبقات تحت هر سه سناریو افزایش پیدا خواهد کرد. از طرف دیگر با افزایش پنجره زمانی شاخص استاندارد از شدت ترسالی‌ها و خشک‌سالی‌های کاهش می‌یابد، در صورتی‌که تداوم آن‌ها افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of climate change on wet and dry spells’ characteristics (Case study: Arazkuse and Tamar stations in Golestan Province)

نویسندگان [English]

  • M. Bahlake 1
  • A. Fathabadi 2
  • H. Rouhani 2
  • S. M. Seyedian 2
1 M. Sc. Student of Watershed Management, College of Agriculture & Natural resources, Gonbad e Kavus University, Gonbad e Kavus, Iran
2 Assistant Professor, Department of Range and Watershed Management, College of Agriculture & Natural resources, Gonbad e Kavus University, Gonbad e Kavus, Iran
چکیده [English]

As a result of global warming a significant change in wet and dry spells pattern is expected. These variations would be more significant in regions with diverse climates like Golestan province, Iran. In this research, the impact of climate change on the frequency and intensity of droughts are assessed using Standardized Precipitation Indices (SPI) in two raingauges stations namely Arazkuse and Tamar. The rainfall data for baseline period (1986-2005) for both stations were collected and examined. The projections of rainfall amount for two future periods, 2031–2050 and 2051–2070, obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs were downscaled under three representative concentration pathway (RCP2.6, RCP4.5 and RCP8.5), using the statistical downscaling model (SDSM). After evaluation of skill of WG model in simulation of historical rainfall data, SPI and relative SPI values in different time steps were calculated. Then by using first-order Markov chains drought characteristics during baseline and future period were compared. The results showed that probability of droughts in the future in both Tamar and Arazkuse stations, would increase. With increasing SPI time scale, duration of all drought classes is projected to decrease in the future under all three RCP scenarios.

کلیدواژه‌ها [English]

  • Climate change
  • Downscaling
  • SDSM
  • Markov chain
  • SPI Indices
  • Drought

Bhat, U. N., Miller, G. K. 2002. Element of applied stochastic processes. Wiley Interscience, 488 pages.

Burke, E. J., Brown, S. J., Christidis, N. 2006. Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre Climate Model. Journal of Hydrometeorology, 7: 1113–1125.

Dubrovsky, M., Svoboda, M. D., Trnka, M., Hayes, M. J., Wilhite, D. A., Zalud, Z. Hlavinka, P. 2009. Application of relative drought indices in assessing climate change impacts on drought conditions in Czechia. Theoretical and Applied Climatology, 96: 155 – 171.

Heim, R. R. 2002. A review of twentieth-century drought indices usedin the United States. Bulltain of American Meteorological Society, 83: 1149 –1165.

Hirsch, R. M., Slack, J. R. 1984. Non-parametric trend test for seasonal data with serial dependence, Water Resources Research, 20(6): 727–732.

Intergovernmental Panel on Climate Change, (IPCC): Climate Change .2001. The Scientific Basis, Cambridge University Press, Cambridge.

IPCC, 2007. The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Jafarzadeh, M. S., Rouhani, H., Heshmatpoure, A., Kashani, M. 2016. Detecting Trend of Meteorological Series Across the Gorganrood Basin in the Last Three Decades. Journal of Watershed Management Research, 7(13): 230- 240. (In Farsi)

Jones, P. D., Hulme, M., Briffa, K. R., Jones C. G. 1996. Summer moisture availability over Europe in the Hadley center general circulation model based on the Palmer Drought severity index. International Journal of Climatology, 16: 155-172.

Kangas, R. S., Brown, T. J. 2007. Characteristics of US drought and pluvials from a high-resolution spatial dataset. International Journal of Climatology, 27: 1303–1325.

Khazanedari, L., Zabol Abbasi, F., Ghandhari, S. H., Kouhi, M., Mal-bousi, S. H. 2009. Drought prediction in Iran during next 30 years. 9th EMS Annual Meeting, 9th European Conference on Applications of Meteorology (ECAM) Abstracts, held 28 September – 2 October 2009, Toulouse.

Koocheki, A., Nassiri, M., Soltani, A., Sharifi, H., Ghorbani, R. 2006. Effects of climate change on growth criteria and yield of sunflower and chickpea crops in Iran. Climate Reserach, 30: 247- 253. )In Farsi.(

 Lee, J. H., Kwon, H. H.,  Jang, H. W., Kim, T. W. 2016. Future Changes in Drought Characteristics under Extreme Climate Change over South Korea. Advances in Meteorology, http://dx.doi.org/10.1155/2016/9164265.

Leng, G., Tang, Q., Rayburg, S. 2015. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126: 23-34.

Loukas, A., Mylopoulos, N., Vasiliades, L. 2007. A modeling system for the evaluation of water resources management strategies, in Thessaly, Greece. Water Resources Management, 21(10): 1673–1702.

McKee, T. B., Doesken N. J., Kleist, J. 1993. The relationship of drought frequency and duration to time scales. In: Eighth conference on applied climatology, January 17–22. Anaheim, CA: 179– 184.

McKee, T. B., Doesken, N. J., Kleist, J. 1995. Drought monitoring with multiple time scales, Proceedings of the Ninth Conference on Applied Climatology. American Meteorological Society, Boston, 233–236.

Meresa, H. K., Osuch, M., Romanowicz, R. 2016. Hydro-Meteorological Drought Projections into the 21-st Century for Selected Polish Catchments Water, 8 (206): 1-22.

Mishra, A. K., Singh, V. P. 2009. Analysis of drought severity-area frequency curves using a general circulation model and scenario uncertainty. Journal of Geophysical Research-Atmospheres, 114, DOI: 10.1029/2008JD010986.

Moreira, E. E., Paulo, A. A., Pereira, L. S., Mexia, J. T. 2006. Analysis of SPI drought class transitions using loglinear models. Journal of Hydrology, 331(1–2): 349–359.

Mosaedi, A., Sharifiyan, H, Shahabi, M. 2007. Drought risk management with respect to Golestan Province microclimate. Final report of research project in Gorgan University of Agricaltural Science and Natural Resources. (In Farsi)

Paulo, A., Pereira, L. 2007. Prediction of SPI drought class transitions using Markov chains. Water Resources Management, 21(10): 1813–1827.

Qian, B., Gameda, S., Hayhoe, H., DeJong, R., Bootsma, A. 2004. Comparison of LARS-WG andAAFC-WG stochastic weather generators for diverse Canadian climates. Climate Research, 26(3): 175-191.

Sayari, N., Bannayan, M., Alizadeh, A., Farid, A. 2013. Using drought indices to assess climate change impacts on drought conditions in the northeast of Iran (case study: Kashafrood basin). Meteorological Application, 20(1): 115-127. )In Farsi.(

Shahnoushi, N., Shahhossei Dastjerdi, S., Darijani, A., Davari, K. 2010. Drought Risk Management for Sustainable Use of Agricultural Water Resources in Golestan Province (A Case of Gonbad-e-Kavous County). National Conference on Sustainable Development Patterns in Water Management. The Academy of Sciences Islamic Republic of Iran. (In Farsi)

Strzepek, K., Yohe, G., Neumann, J., Boehlert, B. 2010.Characterizing changes in drought risk for United States from climate change. Environmental Research Letter, 5: 1-9.

Vasiliades, L., Loukas, A., Patsonas, G. 2009. Evaluation of a statistical downscaling procedure for the estimation of climate change impacts on droughts. Natchral Hazards and earth System Sciences, 9: 879-894.

Vergni, L., Todisco, F. 2011. Spatio-temporal variability of precipitation, temperature and agricultural drought indices in Central Italy. Agricultural and Forest Meteorology, 151: 301-313.

Vidal, J. P., Wade, S. 2009. A multimodel assessment of future climatological droughts in the United Kingdom. International Journal of Climatology, 14 (29): 2056-2071.

Wilby, R. L., Dawson, C. W., Barrow, E. M. 2002. SDSM- a decision support tool for the assessment of regional climate change impacts. Environmental Modeling Software, 17(2): 145-157.

Wilhite, D. A .2000. Drought as a natural hazard: concepts and definitions. In: Wilhite DA (ed) Drought: a global assessment, Rout ledge: 3-18.

Won Jung, I., Chang, H. 2012. Climate change impacts in spatial patterns in drought risk in the Willamette River Basin, Oregon, USA. Theoretical and Applied Climatology, 108: 355– 371.

Yeh, C. F., Wang, J., Yeh, H. F., Lee, C. H. 2014. SDI and Markov Chains for Regional Drought Characteristics. Sustainability, 7: 10789-10808.

Zargar, A., Rehan, Sadiq, R., Khan, F. I. 2014. Uncertainty-Driven Characterization of Climate Change Effects on Drought Frequency Using Enhanced SPI. Water Resources Management, 28: 15–40.