شیب‌هایی استوکاستیکی بارش روزانه چندایستگی در شمال شرق ایران: تأثیر ناپایا‌ستیزی زمانی

پژوهش که طراحی و پیام‌دهی آن توسط مدل‌های استوکاستیکی تک‌بستگی که در پژوهش انجام شده بود و مدل‌های اندازه‌گیری هسته‌سنجی پارادکس (مقدار و مقادیر) در قالب چندایستگی در دسترس می‌باشد، این حال در مدل‌های موجود توجهی به احتمال ناپایا‌ستیزی در محل‌های مختلف مقایسه کرده‌اند.

چکیده

شیب‌هایی استوکاستیکی بارش روزانه در سباری از مدل‌های هیدرولوژی، هیدرولوژی و اقلیمی به داده‌های باران روزانه نیاز دارند. با این حال، چنان‌الاً مدل‌های استوکاستیکی در سباری استفاده کنندگان مارکوف منطقه‌ای اول و مقادیر مارکوف که در لازم استفاده نشان داده شد که هم‌ارزی این مدل‌ها با داده‌های موجود است. با توجه به اینکه در زمان نالاسه‌بوده و در این مدل‌ها، بررسی‌هایی انجام شده که نتایج آن‌ها در مدل‌های موجود است می‌شود.

واژه‌های کلیدی: بارش‌های ناپایا، مدل‌های استوکاستیک، انتقال، بارش‌های خشک و بارش‌های بارانی

مقدمه

بسایی از مدل‌های کشازوری، هیدرولوژی و اقلیمی به داده‌های باران روزانه نیاز دارند. با این حال، چنان‌الاً مدل‌های استوکاستیکی در سباری استفاده کنندگان مارکوف منطقه‌ای اول و مقادیر مارکوف که در لازم استفاده نشان داده شد که هم‌ارزی این مدل‌ها با داده‌های موجود است. با توجه به اینکه در زمان نالاسه‌بوده و در این مدل‌ها، بررسی‌هایی انجام شده که نتایج آن‌ها در مدل‌های موجود است می‌شود.

شیب‌هایی استوکاستیکی بارش روزانه چندایستگی در شمال شرق ایران: تأثیر ناپایا‌ستیزی زمانی

پژوهش که طراحی و پیام‌دهی آن توسط مدل‌های استوکاستیکی تک‌بستگی که در پژوهش انجام شده بود و مدل‌های اندازه‌گیری هسته‌سنجی پارادکس (مقدار و مقادیر) در قالب چندایستگی در دسترس می‌باشد، این حال در مدل‌های موجود توجهی به احتمال ناپایا‌ستیزی در محل‌های مختلف مقایسه کرده‌اند.

چکیده

شیب‌هایی استوکاستیکی بارش روزانه در سباری از مدل‌های هیدرولوژی، هیدرولوژی و اقلیمی به داده‌های باران روزانه نیاز دارند. با این حال، چنان‌الاً مدل‌های استوکاستیکی در سباری استفاده کنندگان مارکوف منطقه‌ای اول و مقادیر مارکوف که در لازم استفاده نشان داده شد که هم‌ارزی این مدل‌ها با داده‌های موجود است. با توجه به اینکه در زمان نالاسه‌بوده و در این مدل‌ها، بررسی‌هایی انجام شده که با توجه به اینکه در زمان نالاسه‌بوده و در این مدل‌ها، بررسی‌هایی انجام شده که نتایج آن‌ها در مدل‌های موجود است می‌شود.

واژه‌های کلیدی: بارش‌های ناپایا، مدل‌های استوکاستیک، انتقال، بارش‌های خشک و بارش‌های بارانی

مقدمه

بسایی از مدل‌های کشازوری، هیدرولوژی و اقلیمی به داده‌های باران روزانه نیاز دارند. با این حال، چنان‌الاً مدل‌های استوکاستیکی در سباری استفاده کنندگان مارکوف منطقه‌ای اول و مقادیر مارکوف که در لازم استفاده نشان داده شد که هم‌ارزی این مدل‌ها با داده‌های موجود است. با توجه به اینکه در زمان نالاسه‌بوده و در این مدل‌ها، بررسی‌هایی انجام شده که نتایج آن‌ها در مدل‌های موجود است می‌شود.
برطرف کردن؛ به گونه‌ای که مشکلات مربوط به ماتریس‌های تحریرین منبت بر فرآیند، مشابه‌تبار اعداد تصادفی و اعداد واقعی (مربوط به وقوع باران و در مقدار باران) قابل حل باشد. مشکل بقای مانند در روش‌های شبیه‌سازی استوکاستیکی، از جمله برای ورش و ویلکس (1988) و وان و باتونر (2011) این است که در آن‌ها پارامترهایی از جمله تاثیرهای احتمالی وقوع بارندگی و بارش‌ها تابع جاسوسی نماینده‌ای (نما برای روش ویلکس (1988) و گاما برای روش ایگنته (2011) از داده‌های ماهندرا استخراج می‌شود. این پارامترها به‌طور کلی وابسته به وقوع در این حال این نکته بیان می‌کند که به نوسانات زمانی آنها توجه نشده و وقت این آنها در زمان نابی‌فروش شده است. در صورتی که نه تنها نوسانات تصادفی در سری‌های زمانی پذیرفته شده است (نلسون و پلوس، 1982)، آنها در حال حاضر وقوع سری‌های زمانی نایتیست از این باید برای شیب‌های هم‌سازی (فیوزر، 1976) و همکاران، 2001. 2011) برای این نشان‌داده که پارامترهای مدل استوکاستیکی باران (وپتی و مقدار) در خراسان دارای روند است و تغییرات پله‌ای غیرنظم‌آمیز آن را نشان داده. بنابراین این نشانه مشاهده نشده است که این تغییرات زمانی پارامترهای مدل شبیه‌سازی (هم مربوط به وقوع بارندگی و هم مربوط به این نمایندگان) نیز محدودیت باشد.

مواد و روش‌ها

منطقه خراسان بزرگ (شمال سه استان خراسان رضوی، شمال و جنوبی) جهت مطالعه در این پژوهش انتخاب شده است. از این پس برای سه‌ساله‌های گزارش‌های وقوع باران و همراه با آن از منطقه خراسان بزرگ استفاده می‌شود. این منطقه با توجه به شرایط اقیانی، ماله بر کمپوس بارش، دارای توزیع نامتناهی زمانی و مکانی بارندگی در طول سال نیز هست. به طور کلی از جنوب به شمال در میان بارندگی افزایش می‌شود. افزایش این در استفاده از 184 استگنا باران سنی و هوشمندان در

۱ Hughes et al.
۲ Brisette et al.
۳ Srikanthan and Pegram
۴ Srikanthan and Frey
۵ Thompson et al.
۶ Fackler
۷ Mhanna and Bauwens
وقوع بارندگی در مجموع N مدل (ایستگاه باران سنگی و M مدل $N\times M$) از اعتبار یافته با هر یک از این داده‌ها برای شیب‌سازی تکایاگاهی بارندگی استفاده می‌گردد که با توجه به نقش اساسی کشاورزی در اقتصاد این منطقه و تأثیر برای کاهش گیاهان در بارندگی در برنامه‌ریزی اقتصادی و مدیریت منابع آب دارد، بایستی بارش اهمیت زیادی دارد. به دنبال ناحیه بودن بارندگی در ماه‌های اولیه این منطقه در شیب‌سازی‌ها در نظر گرفته شد (پرای افزایش از باران در ماه‌های بر با ۱۲ ماه باران به ایمنی و همکاران (۲۰۰۹) و مراجعه شده است. برای شیب‌سازی بارندگی از گوی دو جزئی استفاده می‌شود (حنا و باتوتو، ۲۰۱۱). از زنجیره مارکوف مرتبه اول برای ساختار وقوع بارندگی رویه و تابع توزیع کامی انترباتری برای پیش‌بینی مقدار آن استفاده شده است.

دش منطقه خراسان به دست آمده این‌ها از این داده‌ها برای شیب‌سازی تکایاگاهی بارندگی استفاده می‌گردد که با توجه به نقش اساسی کشاورزی در اقتصاد این منطقه و تأثیر برای کاهش گیاهان در بارندگی در برنامه‌ریزی اقتصادی و مدیریت منابع آب دارد، بایستی بارش اهمیت زیادی دارد. به دنبال ناحیه بودن بارندگی در ماه‌های اولیه این منطقه در شیب‌سازی‌ها در نظر گرفته شد (پرای افزایش از باران در ماه‌های بر با ۱۲ ماه باران به ایمنی و همکاران (۲۰۰۹) و مراجعه شده است. برای شیب‌سازی بارندگی از گوی دو جزئی استفاده می‌شود (حنا و باتوتو، ۲۰۱۱). از زنجیره مارکوف مرتبه اول برای ساختار وقوع بارندگی رویه و تابع توزیع کامی انترباتری برای پیش‌بینی مقدار آن استفاده شده است.

$\hat{P}_{01}(k) = \frac{n_{01}(k)}{n_{0}(k) + n_{00}(k)} \quad (1)$

$\hat{P}_{11}(k) = \frac{n_{11}(k)}{n_{1}(k) + n_{10}(k)} \quad (2)$

1. Katz and Parlane
2. Schwarz
3. Zheng and Katz

شکل 1- نقشه بارندگی ایستگاه‌های باران سنگی منتخب استان‌های خراسان و سمنان در حال حاضر. خطوط ترسیم شده مربوط به متر مالیه این استان‌ها مورد نظر است.
\(u_t(k) = \Phi [w_t(k)] \) \((9) \)

که در آن \(\Phi \) تابع توزیع تجمع نرمال استاندارد است. برای فرآیند روبروی، اعداد تصادفی با توزیع نرمال باید ویژگی همبستگی مربوط به نحوه وقوع پدیده‌گی را حفظ کند. همبستگی بین متغیرهای نرمال استاندارد آرایه \(\sigma(k,l) \) مثال \(w(l) \) و \(w(k) \) مدل توزیع نرمال دومتغیره تولید می‌شود. سپس مقدار این \(o(k,l) \) تعیین مشاهده شده‌ای از برای همبستگی \(\gamma(k,l) \) مقدار مشاهده شده‌ای از \(o(k,l) \) (ویژگی) و \(o(k) \) و \(o(l) \). در اینجا این مشکل بروز می‌کند که امکان محاسبه مستقیم از \(o(k,l) \) وجود ندارد. ولکسک (1994) در نشان داد که فرآیند ایستگاه‌های \(k \) و \(l \) وابستگی یکسانی می‌کند که در آن رابطه بهتر یا دو ایستگاه و یا یک هم‌ریزی برای تهیه و سپس از آن مقدار \(o(k,l) \) به دلیل زمان بردن اینکه و خواستارهای مورد نظر ناکافی هستند. در نتیجه داده‌ها (2007) روسون، 1 اثرات گردیده، برای بودن و از معادله 1 محسوب می‌شود.

\[\gamma(k,l) = \frac{\pi_0(k,l)\pi_l(0)\pi_0(0)\pi_l(0)}{\pi_0(k)\pi_l(0)\pi_0(0)\pi_l(0)} \] \((10) \)

که در آن \(\pi_0(k,l) \) احتمال توالی ای است که هر دو ایستگاه خشک باشد. احتمال توالی ای است که هر دو ایستگاه بارانی باشد و غیره. حال متغیرهای نرمال \(n(k) \) نشان داده که توزیع گاما به پارامتر \(\sigma(k,l) \) می‌باشد که توزیع

\[\pi_0(k,l) = \text{Pr} \{ X_t(k,l) = 1 \} = \frac{P_0(k,l)}{P_0(k,l) + P_1(k,l)} \] \((3) \)

\[\pi_0(k) = 1 - \pi_i(k) \] \((4) \)

2- تعیین همبستگی بین سری‌های وقوع پدیده‌گی برای هر دو ایستگاه \(k \) و \(l \) همبستگی بین سری‌های وقوع پدیده‌گی \(\pi_0(k) \) با معادله 8 داده می‌شود.

\[\xi(k,l) = \text{Corr} \{ X_t(k,l), X_t(k) \} \] \((5) \)

مقدار این همبستگی را می‌توان به صورت معادله 6 به دست آورد (سری‌کنتینگن، چیپرگ، 2009؛ تامپوس و همکاران، 2007).

\[\xi_0(k,l) - \xi_0(k) \] \((6) \)

\[\text{ Var}(\xi_0(k)) = \frac{\pi_1(k)\pi_0(k)}{\pi_0(k)\pi_1(k)} \] \((7) \)

\[\pi_0(k,l) = \frac{d_{\text{joint}}}{n} \] \((8) \)

گام سوم. تعیین مدل استاتیستیکی وقوع پدیده‌گی برای شیب‌سازی‌های استاتیستیکی سری‌های از مولتی اعداد تصادفی که در آن اعداد تصادفی با توزیع یکنوخت \(\text{Ai} \) آمده \(\pi_0(k,l) \) تولید می‌شود استفاده می‌گردد. در اینجا توان اعداد تصادفی با توزیع یکنوخت را مستقیماً تولید کرده، زیرا برای حفظ کردن ویژگی ماتریس همبستگی استیتیکی جواب منحصر به فرد برای \(\pi_0(k,l) \) نتایج اعداد تصادفی وجود ندارد (فاکرل، 1994). در قنات شرایط در اینجا باید اعداد تصادفی متریک استاندارد همبستگی \(\text{Ai} \) آمده \(\pi_0(k,l) \) را تولید (حضاوی و باتوئر، 2011) و سپس آن‌ها را با استفاده از معادله 9 به متغیرهای یکنوخت تبدیل کرد.

\[u_t(k) = \Phi \left[w_t(k) \right] \] \((9) \)
همیستگی بین سری‌های مقدار بارندگی، همیستگی بین سری‌های زمانی بارندگی در دو استخوان k و l ای‌گی
با معادله 18 نشان داده می‌شود.

\[\eta(k,l)=\text{Corr}[Y_i(k),Y_i(l)] \]

(18)

در اینجا از همیستگی حاصل ضرب گشاتری پیرسون استفاده می‌شود. مدل کاما مقدار بارندگی را تهیه برای روزهای بارانی تولید می‌کند، از این رو همیستگی بین سری‌های زمانی مقدار بارندگی در دو استخوان k و l نیز تهیه برای جفت واقعی که در دو استخوان بارانی باشد محسوب خواهد شد.

3- تعریف مدل استوکاستیکی مقدار باران. با استفاده از بردار متغیرهای پیوسته همیستگی (\(\mathbf{z}(k)\)) و جنبش مارکوف و بارامترهای کاما برای استخوان‌های k و l به مقدار واحدهای همیستگی بین متغیرهای مقدار بارندگی رای این دو استخوان می‌باشد. در اینجا نیز به لحاظ این که مقدار را با نماد مشاهده گردیده ایکس به دست آوردن مستقیم وجود ندارد، برای استفاده از استوکاستیکی استخوان‌های مقدار بارندگی از مولکول اعداد تصادفی که همیستگی همیستگی را مقدار می‌شود استفاده شد، سپس اعداد تصادفی را به طور جداگانه تبدیل کرد. به توزیع‌های حاشیه‌ای یک‌نقطه‌ای بسته کرده‌اند. در اینجا این مشکل بروز می‌کند که جود و باستگی بین متغیرهای کاما به این تبدیل غیرخطی حساس است. زیرا همیستگی دو متغیر جمعیتی (خطی) حاضر به گشاتری پیرسون تحت تبدیلات توزیع‌های حاشیه‌ای لانگرای شده باشد (فاکر، 1991). بنابراین اگر بین متغیرهای کاما و همیستگی خطی جود داشته باشند، بعد از انجام تبدیل مقدار آن تغییر خواهد کرد.

استفاده از سایر روابطی که همیستگی را از نظر تبدیل مکانیک وقفه بارندگی ایستگاه‌ها در آنها حفظ شده است، برای تولید سری زمانی وقفه بارندگی در استخوان مشخص استفاده می‌شود. این مکانیک که این استفاده با استفاده از شرطی مناسب برای اگزیسیون بارانی بودن-نیوتن با توجه به بارانی بودن-نیوتن روز پیش آن ترکیب \(P_{01}(k)\) و \(P_{11}(k)\) مقایسه می‌شود. استفاده از معادله 12 داده می‌شود.

\[P_k = \begin{cases} P_{01}(k) & \text{if } X_{k-1} = 0 \\ P_{11}(k) & \text{if } X_{k-1} = 1 \\ P_e & \text{if } \Phi[w] - P_e & \text{if } \Phi[w] < P_e \end{cases} \]

(13)

سپس روز بعد بارانی خواهان بود اگر عدد تصادفی به ادغمه کافی کوچک بود.

\[X_k = \begin{cases} 1 & \text{if } \Phi[w(k)] - P_e \geq 0 \\ 0 & \text{if } \Phi[w(k)] - P_e < 0 \end{cases} \]

(14)

مقدار باران‌گر

همچون مدل وقفه بارندگی، تولید مقدار بارندگی نیز توسط متغیرهای تصادفی که تولید آنها مستقل بوده وی همیستگی مکانی آنها حفظ شده هستند. همیستگی مکانی آنها موجب حفظ آنها شده است. همیستگی مکانی آنها موجب حفظ آنها شده است.

کمک در اینجا نیز، همچنین شیوه‌سازی وقفه بارندگی، در اینجا نیز برای کمک به دست آمده در روز مقدار وقفه استفاده می‌شود. \(\zeta(k,l)\) مقدار مشخص از \(\mathbf{z}(k)\) به همراه همیستگی متغیرات از \(\mathbf{z}(k)\) و \(\mathbf{z}(l)\) و جنبش مارکوف و بارامترهای کاما برای استخوان‌های k و l به مقدار واحدهای همیستگی بین متغیرهای مقدار بارندگی رای این دو استخوان می‌باشد. در اینجا نیز به لحاظ این که مقدار را با نماد مشاهده گردیده ایکس به دست آوردن مستقیم وجود ندارد، برای استفاده از استوکاستیکی استخوان‌های مقدار بارندگی از مولکول اعداد تصادفی که همیستگی همیستگی را مقدار می‌شود استفاده شد، سپس اعداد تصادفی را به طور جداگانه تبدیل کرد. به توزیع‌های حاشیه‌ای یک‌نقطه‌ای بسته کرده‌اند. در اینجا این مشکل بروز می‌کند که جود و باستگی بین متغیرهای کاما به این تبدیل غیرخطی حساس است. زیرا همیستگی دو متغیر جمعیتی (خطی) حاضر به گشاتری پیرسون تحت تبدیلات توزیع‌های حاشیه‌ای لانگرای شده باشد (فاکر، 1991). بنابراین اگر بین متغیرهای کاما و همیستگی خطی جود داشته باشند، بعد از انجام تبدیل مقدار آن تغییر خواهد کرد.

استفاده از سایر روابطی که همیستگی را از نظر تبدیل مکانیک وقفه بارندگی ایستگاه‌ها در آنها حفظ شده است، برای تولید سری زمانی وقفه بارندگی در استخوان مشخص استفاده می‌شود. این مکانیک که این استفاده با استفاده از شرطی مناسب برای اگزیسیون بارانی بودن-نیوتن با توجه به بارانی بودن-نیوتن روز پیش آن ترکیب \(P_{01}(k)\) و \(P_{11}(k)\) مقایسه می‌شود. استفاده از معادله 12 داده می‌شود.

\[P_k = \begin{cases} P_{01}(k) & \text{if } X_{k-1} = 0 \\ P_{11}(k) & \text{if } X_{k-1} = 1 \\ P_e & \text{if } \Phi[w] - P_e \geq 0 \\ \Phi[w] - P_e & \text{if } \Phi[w] - P_e < 0 \end{cases} \]

(13)

سپس روز بعد بارانی خواهان بود اگر عدد تصادفی به ادغمه کافی کوچک بود.

\[X_k = \begin{cases} 1 & \text{if } \Phi[w(k)] - P_e \geq 0 \\ 0 & \text{if } \Phi[w(k)] - P_e < 0 \end{cases} \]

(14)
手続き حفظ کنند راهکار مناسب قلمداد می‌شد (فاطمی، ۱۹۹۱). یکی از این روش‌ها، همگانی‌سازی (با همگانی‌سازی و معاین‌سازی) است. این روش باید با استفاده از کنترل اینکه این مراحل مورد نظر ایستاده با مسیر همگانی‌سازی سایر سطوح باید تکرار و رهگیری می‌کرد.

نتایج و بحث

بررسی فاکتور مکانی پارامترها

جدول ۱ تغییرات پارامترها را برای یک متغیر مستقل‌ای است که بالاترین درصد آن تنها ۰.۰۵ است. می‌توان این روش‌ها بوده و در تصدیق انگیزش شدن‌های مثبت (جهت مشاهده موقعیت نسبی ایستادگی) به شکل ۱ تغییرات. تاکنون تغییرات پارامترها در هر دو بعد زمانی (مهم‌ترین باران سال) و مکان قابل ملاحظه‌ای است. وجود تغییرات در بعد زمانی و تنها می‌توان این نوع فع‌لی بوده و فاکتورهای اثر باران مسئولیت بوده که احتمالاً ناشی از پراکندگی و دمای عرصه، نیروی و شکل‌آمیختگی به‌طور کامل مشاهده شده است. برای هر مقدار مطالعه کننده‌های باران می‌توان این نوع فعالیت را با استفاده از کنترل اینکه این مراحل مورد نظر ایستاده با مسیر همگانی‌سازی سایر سطوح باید تکرار و رهگیری می‌کرد.

تأثیر ناپایداری زمین

در این مقاله تأثیر ناپایداری زمین در قلب چگونگی در نظر گرفتن پارامترهای موتور در فرآیند شیپسازی بارانگی‌های دیده شده است. برای هر ایستگاه و برای هر زمان اینکه اینکه با استفاده از نیروی و شکل‌آمیختگی به‌طور کامل مشاهده شده است. برای هر مقدار مطالعه کننده‌های باران می‌توان این نوع فعالیت را با استفاده از کنترل اینکه این مراحل مورد نظر ایستاده با مسیر همگانی‌سازی سایر سطوح باید تکرار و رهگیری می‌کرد.

 Summary

The research results showed that the effects of environmental factors on the number of rainfall events were significant. The study indicated that the number of rainfall events decreased as the temperature increased. The results also showed that the number of rainfall events increased as the wind speed increased. The study concluded that environmental factors play a significant role in the occurrence of rainfall events.

References

1. Kruskal
2. O’Brien and Griffiths
جدول 1- تغییرات پارامترهای مدل شبیه‌سازی بارندگی روزه‌ای استیگتک منفی در استان خراسان برای ماه‌های بارانی. موضعی نسبی استیگتکها در شکل 1 نشان داده شده است.

| ماه | پارامتر | اینکردن | استفاده | نهایی | آندر | اضافه | پارامتر *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۹۶/۰۱/۰۲</td>
<td>α</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۰۲/۰۳</td>
<td>β</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۰۳/۰۴</td>
<td>α</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۰۴/۰۵</td>
<td>β</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۰۵/۰۶</td>
<td>α</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۰۶/۰۷</td>
<td>β</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۰۷/۰۸</td>
<td>α</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۰۸/۰۹</td>
<td>β</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۰۹/۱۰</td>
<td>α</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۱۰/۱۱</td>
<td>β</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۱۱/۱۲</td>
<td>α</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
<tr>
<td>۱۳۹۶/۱۲/۱۳</td>
<td>β</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
<td>۲/۱۰۱</td>
</tr>
</tbody>
</table>

تعداد پارامتر (α) استیگتک مربوط به سالانه ممکن است باشد. تعداد پارامتر (β) احتمال موفقیت بارانز و (α) و (β) پارامترهای تابع چگالی‌گانی میآینده برای بارانژ.

بسیار می‌تواند کمترین تفاوت میانگین مربوط به پارامترهای مدل وقوع بارندگی بود. احتمال وقوع روزی برای بارانژ بیش از ۲۳/۲۰ در ۱۲/۱۹/۱۳۹۶ است. دامنه احتمال وقوع روزی برای بارانژ بیش از ۲۳/۲۰ در ۱۲/۱۹/۱۳۹۶ است. دامنه احتمال وقوع روزی برای بارانژ بیش از ۲۳/۲۰ در ۱۲/۱۹/۱۳۹۶ است. دامنه احتمال وقوع روزی برای بارانژ بیش از ۲۳/۲۰ در ۱۲/۱۹/۱۳۹۶ است.
با توجه به نتایج این مطالعه، تأثیر ناپیشبندی زمانی از سایر افراد مدل شیپی‌سازی نیست.

نتایج

باسئیپتیکی بارش

با آنچه در واقعیت وجود دارد، تمامی شکل‌های ماه بارانی و تاریکی استیگاها به صورت گیگارچره دیده شده و تمایز احتمالی بین تفاوت در نتایج بین ماه‌های سال و بین موقعیت مشتق استیگاها نامیده گرفته شده است. این امر به تأثیر ناپیشبندی زمانی موجب تغییرات شیپی‌سازی در هوا شده است. این تغییرات در راستای شکل 2 هوده و مجدداً این مقدار که تغییر بدولات رفت در طول مدت 200 سال (از 1 تا 30) بر روی محور افقي)

| ناپیشبندی زمانی از سایر افراد مدل شیپی‌سازی نیست. |

بررسی تغییرات سالانه بارامترها

شکل 2

روند زمانی پارامترهای مدل شیپی‌سازی بارنمگی روانه‌ها (از ماه فوریه 201) برای ایستگاه نمونه (نیک آباد) در طول 30 سال آماری نشان می‌دهد.

مشخص است که تمام پارامتر مدل شیپی‌سازی بارنمگی (هم مدل واقع بارنمگی و هم مدل مقدار بارنمگی) به طور کلی به سراسر مدت زمانی کناره‌گیری نمی‌کند.

تأثیر ناپیشبندی زمانی از سایر افراد مدل شیپی‌سازی نیست

گرچه بطور منطقی نمی‌توان پارامترهایی را که ماهمت نالیست بدارند را به طور یک‌پاره‌کاری کرد و آنها را در مدل شیپی‌سازی استوکاستیکی بارش استفاده نمود ولی در اینجا تفاوت باعث گرفتن مقایسه‌های اخره گردید.

مقایسه‌ای بین کارایی دو حالت چند (بیرون در نظر گرفت ناپیشبندی زمانی) با در نظر گرفت آن، به ترتیب

| سازنده 1 و 2 | نشان می‌دهد | در محاسبه ریشه میانگین مربعات خطا به عنوان معیار برای خطا شیپی‌سازی‌ها |

Mhanna, M., Bauwens, W. 2011. A stochastic space-time model for the generation of daily
Cooperative Research Centre for Catchment Hydrology, Technical Report: 05/7.

A stochastic multi-station model for daily rainfall generation in North-East of Iran: Effect of time non-stationarity

B. Ghahraman¹*, E. Amini²

Received: 21/11/2015
Accepted: 10/04/2017

Abstract
For many models (e.g. hydrological, meteorological, crop yield) stochastic daily rainfall generation is required. Most of the stochastic models are single-site, while there are rather few ones that deal with the rainfall correlation structure (occurrence and amount) as a multi-site approach. A plausible shortcoming of these models, however, is due to not considering the possible time-non-stationarity. A total of 36 raingauges stations in North, Razavi and South Khorasan provinces, northeast of Iran with 30 years of record were considered in this study. A stochastic rainfall simulation model for 6 rainy months of November to May was adopted, in which, first order Markov approach for rainfall occurrence and Gamma probability density function for rainfall amount were involved. Model parameters (rainfall probability conditioned to rainy and dry for previous day for rainfall occurrence and two parameters of Gamma distribution) were found to be dependent on the month of the year and geographical location; yet, no significant relations were found to describe them. It was showed that all parameters were non-stationary in time, such that considering this behavior, increased the accuracy of simulations.

Keywords: Arid and semi-arid climates, Gamma probability density function, Transition matrix, Iran, Rainfall

¹ Professor, Water Engineering Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
(*Corresponding Author’s Email Address: bijangh@um.ac.ir)
² Former Graduate Student of Irrigation and Drainage, Water Engineering Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran