ارزیابی مولد هواشناسی SHArP جهت شبیه سازی داده های دمای هوا در چند نمونه اقلیمی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا هواشناسی کشاورزی، گروه آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران

2 دانشیار گروه آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران، کرج، ایران

3 دانش آموخته دکتری هواشناسی کشاورزی، گروه آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران

چکیده

دمای هوا متغیری بنیادی در مطالعات اقلیمی- کشاورزی به ویژه مدلهای زراعی، تعیین نیاز آبی و تغییر اقلیم است.علیرغم سهولت اندازه گیری و فراگیری دسترسی به این کمیت، تکمیل خلاهای اماری و نیاز به داده های آینده، توسعه مولدهای هواشناسی را ضروری نموده است. در این مطالعه، مولد استوکاستیک SHArP برای شبیه سازی دمای بیشینه و کمینه در مقیاس روزانه مورد استفاده و ارزیابی قرار گرفت. بدین منظور از داده‌های مشاهداتی دمای بیشینه و کمینه و همچنین داده‌های مدل اقلیمیCMIP5 CNRM-در چهار ایستگاه سینوپتیک کرمان، اهواز، کرج و تبریز طی دوره آماری 2015-2000 استفاده شد. نتایج ضریب همبستگی پیرسون(0.78 تا 0.93) و سنجه‌های خطا نشان داد همبستگی بالا و معنی‌داری بین داده‌های مشاهداتی ایستگاهی و داده‌های مدل‌ اقلیمی وجود دارد. برونداد مدل‌ اقلیمی نسبت به داده‌های مشاهداتی فروبرآوردی بود. نتایج مقایسه داده‌های دمای تولید شده توسط مدل SHArP نشان می‌دهد همبستگی بالا و معنی‌داری بین داده‌های مشاهداتی و داده‌های شبیه سازی شده وجود دارد. به‌طوریکه ضریب همبستگی پیرسون در ایستگاه‌های مورد بررسی بین 0.80 تا 0.95 می باشد که بیشترین مقدار این ضریب مربوط به دمای بیشینه است. همچنین مدل SHArp مقدار دما را کمتر از داده های دیدبانی براورد می کند. در مجموع، یافته های این پژوهش نشانگر توانایی مناسب این مولد در شبیه سازی داده های دمای هوا می باشد و می تواند به عنوان روشی برای تکمیل خلاء های آماری استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of SHArP weather generator for simulation of air temperature data in several climates of Iran

نویسندگان [English]

  • Saeedeh Kamali 1
  • Nozar Ghahreman 2
  • Mahdi Ghamghami 3
1 PhD student of Agrometeorology, University of Tehran
2 Associate Professor, Department of Irrigation and Reclamation, University of Tehran, Karaj, Iran
3 PhD Graduate of Agrometeorology, University of Tehran
چکیده [English]

Temperature is a key variable in climate and agriclutiral studies especially crop models, water requirement estimation and climate change. Despite of ease of measurement and large number of recording stations, data gaps in remote areas and the need for downscaling the grided climate model output has led to development of weather generators. In this study, the skill of Stochastic Harmonic Autoregressive Parametric (SHArP)SHArP weather generator in simulation of the daily maximum and minimum air temperature on a daily scale in 4 weather stations was evaluated. For this purpose, maximum and minimum temperature data as well as CNRM CMIP5 climate model projections were used in four synoptic stations of Kerman, Ahvaz, Karaj and Tabriz during the period of 2000-2015. The results of Pearson correlation coefficient showed that there is a significant correlation between observed data (0.78 to 0.93) and climatic model outputs.Comparing the observed and simulated temperature data generated by the SHArP model showed a good agreement and significant correlation which confirms the skill of this generator. The correlation coefficient in the studied stations varies between 0.80 to 0.95. The highest value of this coefficient belonged to the maximum temperature. The SHArp model also less simulates the temperature. In general, the findings of this study revealed that the SHArP model is capable to generate temperature data and can be used for filling the gaps.

کلیدواژه‌ها [English]

  • Air Temperature
  • Climate model
  • Iran
  • Weather Generators
Babaeian, I., Kwon, W.T., Im, E.S., 2004. Application of weather generator technique for climate change assessment over Korea. Korea Meteorological Research Institute. Climate Research lab, 98.
Bannayan, M., Hoogenboom, G., 2008. Weather analogue: a tool for real-time prediction of daily weather data realizations based on a modified k-nearest neighbor approach. Environmental Modelling & Software, 23(6): 703-713.
Crawford, N.H., Linsley, R.K., 1966. Digital Simulation in Hydrology'Stanford Watershed Model 4 (39).
Badescu, V. 2008. Modeling soalr radiation at the earth surface. Verlag Berlin Heidelberg. Springer.
 Forsythe, N., Fowler, H., Blenkinsop, S., Burton, A., Kilsby, C., Archer, D., Harpham, C., Hashmi. M. 2014. ApplicationApplication of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The upper Indus basin. The Upper Indus Basin. Journal of Hydrology, 517: 1019–1034.
Ghamghami, M., Bazrafshan, J. 2011. Evaluation of a nonparametric multivariate approach simulating monthly temperature and rainfall variables (Case study: Jazmourian catchment). First National Conference on Meteorology and Agricultural Water Management, University of Tehran, Karaj. (In Farsi)
Ghamghami, M., Bazrafshan, J., Ghahreman, N. 2010. Performance evaluation of a non-parametric approach in simulating monthly rainfall data of some old stations in Iran. 14th Iranian Geophysical Conference, Tehran. (In Farsi)
Khalili, N., Davari, K., Alizadeh, A., Ansari, H., Rezainejad, H., Kafi, M., Ghahreman, B. 2016. Evaluation of the performance of LARS-WG and ClimGen models in the production of rainfall and temperature time series in Sisab rainfed research station, North Khorasan. Journal of Water and Soil (Agricultural Sciences and Industries), 30: 322-333. (In Farsi)
Kiktev, D., Caesar, J., Alexander, L. V., Shiogama, H., Collier, M. 2007. Comparison of observed and multimodeled trends in annual extremes of temperature and precipitation. Geophysical Research Letters, 34.
Kleiber, W., Katz, R. W., Rajagopalan, B. 2013. Daily minimum and maximum temperature simulation over complex terrain. The Annals of Applied Statistics, 7: 588–612.
Kleiber, W., Katz, R. W., Rajagopalan, B. 2012. Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resources Research, 48.
Matalas, N.C. 1967. Mathematical assessment of synthetic hydrology, Water Resources Research, 3: 937-945.
Mavromatis, ra T., Hansen, J. W. 2001. Interannual variability characteristics and simulated crop response of four stochastic weather generators. Agricultural and forest meteorology, 109: 283-296.
Nasiri, B., Yarmoradi, Z. 2017. Prediction of changes in climate parameters of Lorestan province in the next 50 years using HADCM3 model. Scientific - Research Quarterly of Geographical Data (SEPEHR), 26(101). (In Farsi)
Nosrati K., Zehtabian Gh. R., Moradi E., Shahbazi A. 2008. Evaluation of stochastic simulation method for generating meteorological data. Geographical Research Quarterly, 39 (62): 1-9. (in Farsi)
Parely, S. 2019. Generating a set of temperature time series representative of recent past and near future climate. Frontiers in Environmental Science, 7: 99.
Richardson, C. W. 1981. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water resources research, 17: 182–190.
Richardson, C.W., Wright, D.A. 1984. WGEN: a model for generating daily weather variables. US Department of Agriculture, Agricultural Research Service, 8(83).
Khazaei, MR., Byzedi, M., Sharafati, A. 2017. Climate change impact on annual precipitation and temperature of Zanjan province with uncertainties investigation. Iranian Journal of Eco Hydrology,  4(3): 847 – 860. (In Farsi)
Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W. 1998. Comparison of WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research 10: 95-107.
Skiles, J.W., Richardson, C.W. 1998. A stochastic weather generator model for Alaska. Ecological modeling, 110, 211-232.
Smith, K., Strong, C., Wang, S.-Y., Rassoul-Agha. F. 2017. A new method for generating stochastic simulations of daily air temperature for use in weather generators. Journal of Applied Meteorology and Climatology, 56: 953–963.
Smith, K., Strong, C., Wang, S.-Y. 2015. Connectivity between historical Great Basin precipitation and Pacific Ocean variability: A CMIP5 model evaluation. Journal of climate, 28: 6096–6112.
Smith, K., Strong, C., Rassoul-Agha, F. 2018. Multisite generalization of the SHArP weather generator. Journal of Applied Meteorology and Climatology, 57(9):2113-2127.
Stern, R. D., Coe, R. 1984. A model fitting analysis of daily rainfall data. Journal of the Royal Statistical Society, 147. 1–34.
Taylor, C. J., 1972. A stochastic model of temperature variations at weather stations in Britain Applied Statistics, 21(3): 248-260.
Thompson, G. A., Burke, D. B. 1974. Regional geophysics of the basin and range province. Annual Review of Earth and Planetary Sciences, 2: 213–238.
Wilks, D. S, Wilby, R. L. 1999. The weather generation game: A review of stochastic weather models. Progress in physical geography, 23: 329–357.
Wilks, D. S. 1992. Adapting stochastic weather generation algorithms for climate change studies. Climatic Change, 22: 67–84.
Wilks, D. S. 1999. Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain. Agricultural and Forest Meteorology, 96: 85–101.