بررسی تغییرات تبخیرتعرق پتانسیل در شرایط اقلیمی آینده تحت سناریوهای واداشت تابشی (مطالعه موردی: ایستگاه بندر انزلی)
20.1001.1.23453419.1400.9.1.7.4

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی منابع آب، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهیدباهنر کرمان

2 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهیدباهنر کرمان

چکیده

بهبود برآوردهای تبخیرتعرق پتانسیل (ETp) در تعیین دقیق نیاز آبی گیاهان بویژه در شرایط تغییر اقلیم اهمیت زیادی دارد. در این مطالعه تبخیرتعرق پتانسیل در ایستگاه بندر انزلی با استفاده از دو روش هارگریوز- سامانی و تورنت-وایت بر اساس داده‌های دوره 1985-2018 مورد ارزیابی قرار گرفت. مدل آماری SDSM جهت مقیاس‌کاهی خروجی‌های مدل گردش عمومی CanESM2 تحت سناریوهای واداشت تابشی (RCP2.6، RCP4.5 و RCP8.5) استفاده شد. برای ارزیابی و پیش‌نگری داده‌های اقلیمی، دوره آماری 2018-1986 به عنوان دوره پایه و دو دوره آماری 2050-2025 و 2100-2075 به عنوان دوره‌های پیش‌نگری استفاده شدند. بر اساس نتایج حاصله، دما تحت همه سناریوها و برای هر دو دوره زمانی آینده روندی افزایشی خواهد داشت. نتایج نشان داد که p‏ET از سال 2025 تا 2100 تحت سه سناریو افزایش خواهد یافت به جز در روش تورنت-وایت که در دوره زمانی 2075-2100 در ماه مارس کاهش پیدا خواهد کرد. در سناریوی RCP2.6، بیشترین مقدار افزایش p‏ET در روش تورنت-وایت در ماه ژوئیه و برابر با 55 میلی‌متر به دست آمد. این مقدار در روش هارگریوز-سامانی برابر با 63/1 میلی‌متر در ماه آوریل محاسبه شد. در سناریوی RCP4.5 بیشترین مقدار افزایش در ETp در روش تورنت-وایت در ماه ژوئیه (برابر با 96/54 میلی‌متر) و در روش هارگریوز-سامانی در ماه ژانویه (برابر با 45/1 میلی‌متر) طی دوره 2025 تا 2100 به دست آمد. در سناریوی RCP8.5 بیشترین مقدار افزایش در تبخیرتعرق پتانسیل در روش تورنت-وایت در ماه ژوئن (برابر با 34/40 میلی‌متر) و در روش هارگریوز-سامانی در ماه ژانویه (برابر با 72/1 میلی‌متر) طی همان دوره محاسبه گردید. همچنین، کمترین افزایش p‏ET در سناریوی RCP4.5 بین سال‌های 2025 و 2050 و در سناریوی RCP8.5 بین سال‌های 2075 و 2100رخ خواهد داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Projected changes of potential evapotranspiration under RCP climate change scenarios (Case study: Bandar Anzali)

نویسندگان [English]

  • Ferdos Heshmati 1
  • Nasrin Sayari 2
1 M.Sc. Student in Water Resources Engineering, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
2 Assisstant Professor Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Accurate estimation of potential evapotranspiration is crucial in crop water use determination especially under climate change conditions. In this study, the changes of potential evapotranspiration values estimated using Hargreaves-Samani and Thornthwaite methods were investigated during the baseline period, 1986–2018. For future projection, the outputs of the general circulation model (CanESM2) under RCP2.6, RCP4.5 and RCP8.5 scenarios were downscaled using SDSM statistical model during near and far future periods (2025-2050 and 2075-2100). The simulation results showed a rise in temperature in future periods and all scenarios. The results showed that ETp will increase from 2025 to 2100 under three scenarios, except for the Thornthwaite method estimations in March. In the RCP2.6 scenario, the highest increase in ETp in the Thornthwaite method was obtained in July, equal to 55 mm. This value was calculated in the Hargreaves-Samani method equal to 1.63 mm in April. In the RCP4.5 scenario and near future period, the projected rise in ETp values by Thornthwaite method in month of July is 54.96 mm and Hargreaves-Samani method for month of January was 1.45 mm. These values for the same month and methods, in case of RCP8.5 scenario, were 40.34 and 1.72 mm, respectively. According to the results, the lowest increase in ETp will occur in the RCP4.5 scenario between years 2025 and 2050 and in the RCP8.5 scenario between years 2075 and 2100.

کلیدواژه‌ها [English]

  • Climate change
  • Evapotranspiration
  • SDSM
  • RCP scenarios
                Abkar , A.J., Nejad Roshan, M.H., Solaimani, K., Naghavi, H. 2014. Investigation efficiency SDSM model to simulate temperature indexes in arid and semi-arid regions. Journal of Irrigation and Water Engineering, 4(14), 1-17. )In Farsi(
Alizadeh, A. 2002. Principles of applied hydrology. Razavi Publication: Mashhad, Iran, 249-255.
Alizadeh, A., Sayari, N., Hesami, K.M., Banayan, A.M., Farid Hosseini, A. 2010. Assessment of climate change potential impacts on agricultural water use and water resources of Kashaf rood basin. Journal Water Soil, 24(4): 815–835. )In Farsi(
Babaeian, I., Kouhi, M. 2012. Agro-climatic indices assessment over some selected weather stations of Khorasan Razavi province under climate change scenarios. Journal Water Soil, 26(4), 953–967. )In Farsi(
Babolhekami, A., Gholami Sefidkouhi, M. A., Emadi, A. 2020. The Impact of Climate Change on Reference Evapotranspiration in Mazandaran Province. Iranian Journal of Soil and Water Research, 51(2), 387-401.
Bayatvarkeshi, M., Zhang, B., Fasihi, R.,  Adnan,      R. M., Kisi, O., Yuan, X. 2020. Investigation into the Effects of Climate Change on Reference Evapotranspiration Using the HadCM3 and LARS-WG. Water, 12(3), 666. ‏
Daneshfaraza, R., Razzaghpoure, H. 2014. Assessing the effects of climate change on potential evapotranspiration in West Azerbaijan province. Journal of Geographical Space, 14(46), 199-211. )In Farsi(
Dinpashoh, Y. 2006. Study of reference crop evapotranspiration in IR of Iran. Agricultural Water Management. 84(1-2), 123-129.
Goodarzi, M., Jahanbakhsh, S., Rezaee, M., Ghafouri, Mahdian, M. H. 2011. Assessment Of Climate Change Statistical Downscaling Methods in a Single Site in Kermanshah, Iran. Journal of Agriculture and Environmental Sciences, 6(5), 564-572.
Goudarzi, M., Salahi, B., Hosseini, S.A. 2018. Estimation of Evapotranspiration Rate Due to Climate Change in the Urmia Lake Basin. Iranian Journal of   Watershed   Management Science and Engineering, 12(41): 1-12.
Guo, B., Zhang, J., Gong, H., Cheng, X. 2014. Future climate change impacts on the ecohydrology   of   Guishui   River Basin. Eco-                     hydrology and hydrobiology, 14(1), 55-67.
Hargreaves, G. H., Samani, Z. 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2): 96-99.
Hosseini, S.A., Ebrahimitabar, E. 2012. Estimation of potential evapotranspiration city turpentine using empirical methods, the first professional scientific conference on rural development and agriculture, with emphasis on national production, PNU Piranshar center, 12 pages. )In Farsi(
Hulme, M. 1996. Recent Climatic Change in the World's Drylands. Geophysical Research Letters, 23(1), 61-64.
Irmak, S., Irmak, A., Allen, R.G., Jones, J.W. 2003. Solar and net radiation based equations to estimate reference evapotranspiration in humid climates, Journal of Irrigation and Drainage Engineering, 129, 336-347.
Koocheki, A., Nassiri Mahallati, M., Jafari, L. 2016. Evaluation of Climate Change Effect on Agricultural Production of Iran: I. Predicting the Future Agroclimatic Conditions. Iranian Journal of Field Crops Research. 13(4), 651-664. )In Farsi(
Kouchakzadeh, M., Nikbakht, J. 2004. Comparison of different methods to estimate reference evapotranspiration in Iran different climate with PMFAO standard method. Agricultural Sciences ,10(3), 43-57.
Liang, L., Li, L., Liu, Q. 2010. Temporal variation of reference evapotranspiration during 1961–2005 in the Taoer River basin of Northeast China. Agricultural and Forest Meteorology, 150(2), 298-306.
Mahdian, M.H. 2006. Application of geo statistics in Soil Sciences. Proceedings of the 1th Conference of Soil Environment and Sustainable Development. Tehran, Iran, 1-6. )In Farsi(
Mahmood, R., Babel, M.S. 2014. Future changes in extreme temperature events      using       the statistical downscaling model (SDSM) in   the trans-boundary region of the Jhelum river basin. Weather and Climate Extremes, 5, 56–66.
Nistor, M. Mîndrescu, M., Petrea, M, Nicula, D. Rai, A.S., Benzaghta, P. K., Porumb‐Ghiurco, C. G. 2019. Climate change impact on crop evapotranspiration in Turkey during the 21st Century. Meteorological Applications, 26(3), 442-453. ‏
Pouryazdankhah, H., Razavipour, T., Khaledian, M.R., Rezaei, M. 2012. Determining proper methods to estimate the reference evapotranspiration in Rasht region, Third National Conference on Integrated Water Resource Management, University of Agricultural Sciences and Natural Resources, 11 pages. )In Farsi(
Rouhipanah, F., Mirrkani, S. M., Masah Bovani, A. 2013. Investigating the capability of SDSM model in micro-scale of temperature and precipitation in hot and dry climates (Case study: Yazd and Tabas synoptic stations). Iranian Journal of Geophysics, 9(4),104-125. )In Farsi(‏
Salarian, M.N., Davari, M., Eslamiyan, K.S.S., Heidari, M. 2014. The most Appropriate Method to Estimate Potential Evapotranspiration  in  Meteorological  Data Scarce Condition in the Warm and Cold Months of the Year (Case Study of Isfahan). Iranian Journal of irrigation and Drainage, 1(8), 62-73.
Samadi, S., Ehteramian, K., Sari Sarraf, B.2011. SDSM ability in simulate predictors for climate detecting over Khorasan province، Procedia Social and Behavioral Sciences, 19, 741-749،
Samadian Fard, S., Salarifar, M., Javidan, S., Mikaeli. F. 2020. Estimation of daily reference evapotranspiration in wetlands using Gaussian process regression data-driven methods, support vector regression and random forest. Journal of Environment and Water Engineering, 6(4), 360-37. )In Farsi(
Sawano, S., Hotta, N., Komatsu, H., Suzuki, M. and Yayama, T. 2007. Evaluation of evapotranspiration in forested   areas   in   the Mekong basin Using GIS data analysis. Forest Environments in the Mekong River Basin, 36-44.
Seifi, A., Mirlatifi, S.M., Riahi, H. 2011. Developing a combined model of multiple linear regression–principal component and factor analysis (MLR-PCA) for estimation of reference evapotranspiration (Case Study: Kerman Station). Journal of Water Soil, 24(6),1186-1196. )In Farsi(
Taei Semiromi, S., Moradi, H., Khodagholi, M. 2015. Predicted changes in some of climate variables using downscale model LARS-WG and output of HADCM3 model under different scenarios. Journal of Watershed Engineering and Management, 7(2), 145-156). (In Farsi)
Thornthwaite, C. W. 1948. An approach toward a rational classification of climate. Geographical Review, 38(1), 55-94. ‏
Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Masui, T. 2011. There presentative concentration pathways: an overview. Climate Change, 109(1-2), 5.
Wilby, R., Dawson, C.W., Morphy, C., Oconnor, P., Hawkins, E. 2014. The Statistical DownScaling Model-Decision Centric (SDSM-      DC): Conceptual basis and applications. Climate Research, 61(3), 259-276.
Wilby, R.L., Dawson, C.W., Barrow., E.M. 2002. SDSM a decision support tool for the assessment of regional climate change impacts. Environmental Modelling and Software. (17):147–159.
Wilby, R.L., Dawson, W.C. 2007. SDSM 4.2 A decision support tool for the assessment of regional   climate   change   impacts, SDSM manual version 4.2, Environment Agency of England and Wales: 94p.
Wilby, R.L., Wigley, T.M.L.1997. Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography: Earth and Environment, 21(4): 530-548.
Yavuz, H., Erdoğan, S. 2012. Spatial analysis of monthly and annual precipitation trends in Turkey. Water Resources Management, 26: 609–621.