برآورد عملکرد گندم با استفاده از تصاویر ماهواره‌ای در استان گلستان
20.1001.1.23453419.1400.9.1.5.2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیأت علمی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

پیش‌بینی زودهنگام عملکرد گندم چند ماه قبل از برداشت که از چالش‌های مهم در بخش کشاورزی و امنیت غذایی است، مستلزم براورد میزان تولید در سطح وسیع و این امری زمان‌بر و پرهزینه می‌باشد. استفاده از سنجش از دور یک رهیافت عملی و نسبتاً دقیق برای رفع این مشکل است. تفاوتی که در بازتاب طیفی پدیده‌ها وجود دارد می‌تواند در شناسایی و اندازه‌گیری آن‌ها مورد استفاده قرار گیرد. مزارع گندم با توجه به شرایط رشد خود می‌توانند عملکردهای متفاوتی داشته باشند این تفاوت عملکرد بازتاب طیفی مزارع مختلف را تحت تأثیر قرار ‌دهد. در پژوهش حاضر 200 مزرعه گندم از شهرستان گنبدکاووس و مزارع زیر سد وشمگیر انتخاب و عملکرد آن‌ها در سال 1396 مدنظر قرار گرفت. پس از تصحیح تصویر ماهواره لندست 8 مربوط به اردیبهشت، اطلاعات باندهای طیفی آن استخراج و به همراه شاخص‌های مختلف مستخرج از آن‌ها 15متغیر مستقل تشکیل شد. رابطه آن‌ها با عملکرد گندم به عنوان متغیر وابسته با استفاده از روش‌های رگرسیون چندمتغیره خطی و رگرسیون درختی M5 جستجو شد. با توجه به غیرخطی بودن رابطه بین عملکرد گندم با بازتاب‌های طیفی، رگرسیون چند متغیره خطی نتایج رضایت‌بخشی را نشان نداد و در بهترین شرایط این رابطه دارای ضریب همبستگی 63/0 و میانگین خطای 425 کیلوگرم در هکتار بود. اما رگرسیون درختی M5، نتایج قابل قبول‌تری را نشان داد به طوری که با برقراری 5 رابطه رگرسیونی، باهمبستگی 89 درصد و خطای 325 کیلوگرم در هتار، عملکرد گندم را برآورد کرد. این میزان دقت با استفاده از باندهای 1، 3 و شاخص‌های NMDI، NDWI و نسبت باندی 4 به 3 بدست آمد. وجود خطا در گزارش عملکرد گندم، عدم یکنواختی مزرعه و کوچک بودن برخی از مزراع از منابع خطا می‌باشند که با رفع آن‌ها، امکان برآورد دقیق‌تر وجود خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Wheat yield estimation using satellite images in Golestan province

نویسندگان [English]

  • Khalil Ghorbani 1
  • Reza Teimori 2
  • Meysam Salarijazi 1
1 Faculty member of Gorgan University of Agricultural Sciences and Natural Resources
2 Gorgan university of Agricultural sciences and Natural Resources
چکیده [English]

Early prediction of wheat yield is major challenge in agrictultural management and food security. This requires regional estimation of yield which is costly and time consuming. Remote sensing (RS) is a fundamental approach for achieving practical and effective solutions for this problem. The existing differences in the spectral reflectance characteristic of agiven phenomena such as crop canopies, can serve as an identifier attribute . Wheat farms can have different yields based on their various growth and management conditions. These variations can affect the spectral reflectance. In this research, the yields data for year 2017 of 200 wheat farms located in Gonbad-Kavus and Voshmgir Dam regions, Golestan province north of Iran have been studied. After correcting the Landsat 8 satellite images of month of May, spectral bands data were extracted, and 15 spectral indices were calculated. The relation between spectral indices and wheat yield were worked out using multivariate linear regression and M5 regression tree model. According to the nonlinear relation between wheat yield and spectral reflectance, multivariate linear regression did not perform well. The correlation coefficient was about 63%, and the mean error was about 425 kg ha-1. The M5 regression tree model predicted wheat yield with an accuracy of 89 % and root mean square error (RMSE) lower than 325 kg ha-1. This accuracy was obtained using bands 1, 3, and NMDI and NDWI indices and band 4 to band 3 ratios (B43). Inaccurate yield data the non-uniformity and small area of the farms are the main sources of error.

کلیدواژه‌ها [English]

  • Wheat
  • M5 regression tree
  • Remote sensing
  • Spectral reflectance
  • Yield prediction
Ahmad, M.U.D., Masih, I., Turral, H. 2004. Diagnostic analysis of spatial and temporal variations in crop water productivity: A field scale analysis of the rice-wheat cropping system   of    Punjab.    Journal   of    Applied Irrigation Science, 39(1), 43-63.
Amiri, E. 2018. Application of satellite imagery and remote sensing technology to estimate rice yield.     Journal of    Soil and Water Resources                   Conservation, 7(3),55-69.
Anup, K. 2005. Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geo information, 8, 26–33.
Aparicio, N., Villegas, D., Casadesus, J., Araus, J.L., Royo, C. 2000. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agronomy Journal, 92(1), 83-91.
Asner, G.P. 1998. Biophysical and biochemical sources of variability. Remote Sensing of Environment, 64(3), 173–180.
Bach, H., Verhoef, W. 2003. July. Sensitivity studies on the effect of surface soil moisture on canopy reflectance using the radiative transfer model GeoSAIL. In Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International, 3: 1679-1681.
Baret, F., Jacquemoud, S., Hanocq, J.F. 1993. The soil line concept in remote sensing. Remote Sensing Reviews, 7(1), 65-82.
Bausch, W.C., Halvorson, A.D., Cipra, J. 2008. Quickbird satellite and ground-based multispectral data correlations with agronomic parameters of irrigated maize grown in small plots. Biosystems engineering, 101(3), 306-315.
Becker-Reshef, I., Vermote, E., Lindeman, M., Justice, C. 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote sensing of environment, 114(6), 1312-1323.
Bhattacharya, B., Price, R.K., Solomatine, D.P., 2007. Machine learning approach to modeling sediment transport. Journal of Hydraulic Engineering, 133(4), 440-450.
Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., Gregoire, J. M. 2001. Detecting Vegetation Leaf Water Content Using Reflectance in the Optical Domain. Remote Sensing of Environment, 77(1), 22-33.
Dahikar, S. S., Rode, S. V. 2014. Agricultural crop yield prediction using artificial neural network approach. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 2(1), 683-686.
Dasgupta, S. 2007. Remote sensing    techniques For vegetation moisture and fire risk estimation. Ph.D. dissertation, George Mason University, Virginia, United States.
Eyni, N.H., Deihimfard, R., Soufizadeh, S., Haghighat, M., Nouri, O. 2016. Predicting the impacts of climate change on irrigated wheat yield in Fars province using APSIM model. Electronic Journal of Crop Production, 8(4), 203-224.
Fakhari, Z.S.E., Nazemosadat, M.J., Fallah, S.S., Kamgar, H.A., 2014. Possibility of estimating wheat canopy temperature by using remote sensing technique. Scientific Journal of Agriculture, 36(4), 101-111.
Gao, B.C. 1996. NDWI - a Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 58, 257-266.
Ghorbani, Kh., Sohrabian, E., Salarijazi, M. 2016. Evaluation of Hydrological and Data Mining Models in Monthly River Discharge Simulation and Prediction (Case Study: Araz-Kouseh Watershed). Journal of Water and Soil Conservation, 23(1), 203-217
Ghorbani, Kh., Soltani, A. A., 2014. 'The effect of climate change on soybean yield in Gorgan', Journal of Plant Production Research, 21(2), 67-85.
Hardisky, M.A., Klemas, V., Smart, R.M. 1983. The influence of soilsalinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 49, 77-83.
Hayes, M.J., Decker, W.L. 1996. Using NOAA AVHRR data to estimate maize production in the United States Corn Belt. Remote Sensing, 17(16), 3189-3200.
Hunt, R.E., Rock, B.N., Park, S.N. 1987. Measurement of leaf relative water content by infrared reflectance. Remote Sensing of Environment, 22, 429-435.
Kamali, G.A., Momenzadeh, H., Vazife, D.M. 2011. Study of wheat yield production over Esfahan province during periods of dry and wet years using MODIS satellite data. AGROECOLOGY, 3(2), 181-190.
Li-Hong, X.U.E., Wei-Xing, C.A.O., Lin-Zhang, Y.A.N.G. 2007. Predicting grain yield and protein content in winter wheat at different N supply levels using canopy reflectance spectra. Pedosphere, 17(5), 646-653.
                Lobell, D. B., Ortiz-Monasterio, J. I., Asner, G. P., Naylor, R. L., Falcon, W. P. 2005. Combining field surveys, remote sensing, and regression trees to understand yield variations in an irrigated wheat landscape. Agronomy Journal, 97(1), 241-249.
Lobell, D.B., Asner, G.P. 2002. Moisture effects on soil reflectance. Soil Science Society of America Journal, 66(3), 722-727.
Martyniak, L., Dabrowska-Zielinska, K., Szymczyk, R., Gruszczynska, M. 2007. Validation of satellite-derived soil-vegetation indices for prognosis of spring cereals yield reduction under drought conditions–case study from central-western Poland. Advances in Space Research, 39(1),67-72.
Matsushita, B., Yang, W., Chen, J., Onda, Y., Qiu, G. 2007. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors, 7(11), 2636-2651.
Mohammadi Ahmad Mahmoudi, E., Kamkar, B. and Abdi, O., 2015. Comparison of geostatistical-and remote sensing data-based methods in wheat yield predication in some of growing stages (A case study: Nemooneh filed, Golestan province). Journal of Crop Production, 8(2), 51-76.
Mokhtari, S., Pirmoradian, N., Vazifehdoost, M., Davatgar, N. 2013. 'Increasing accuracy of regional rice yield estimation by improvement of spatial resolution of leaf area index maps in VSM vegetative model', Cereal Research, 2(3), 209-221.
Monteith, J.L. 1977. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B: Biological Sciences, 281(980), 277-294.
Nuarsa, I.W., Nishio, F., Hongo, C. 2011. Rice yield estimation using Landsat ETM+ data and field observation. Journal of Agricultural Science, 4(3), 0-45.
Panda, S. S., Ames, D. P., Panigrahi, S. 2010. Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sensing, 2(3), 673-696.
Pinter, P., Jackson, R., Idso, S., Reginato, R. 1981. Multidate spectral reflectance as predictors of yield in water stressed wheat and barley. International Journal of Remote Sensing. 2(1), 43-48.
Quinlan, J.R. 1992. November. Learning with continuous classes. In 5th Australian joint conference on artificial intelligence, 92: 343-348.
Raun, W.R., Solie, J.B., Johnson, G.V., Stone, M.L., Lukina, E.V., Thomason, W.E., Schepers, J.S. 2001. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93(1), 131-138.
Hamzeh, S. 2019. Modeling the sugarcane crop yield by using a composite model based on remote sensing data. Journal of Water and Soil Conservation, 25(6), pp.141-158.
Sanaeinejad, H., NASSIRI, M.M., Zare, H., Salehnia, N., Ghaemi, M. 2014. Wheat yield estimation using Landsat images and field observation: A case study in Mashhad. Journal of agricultural sciences and natural resources, 20(4), 45-63.
Serrano, L., Filella, I., Penuelas, J., 2000. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop science, 40(3), 723-731.
Sharifi, A. 2021. Yield prediction with machine learning algorithms and satellite images. J Sci Food Agric, 101: 891-896.
Solaimani, K., Shokrian, F., Tamartash, R., Banihashemi, M. 2011. Landsat ETM+ based assessment of vegetation indices in highland environment. Journal of Advances in Developmental Research, 2(1), 5-13.
Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2),127-150.
Wang, L., Qu, J.J. 2007. NMDI: A normalized multi‐band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters, 34(20), https://doi.org/10.1029/2007GL031021 .
Witten, I. H., Frank, E. 2005. Data mining: practical machine learning tools and techniques with Java implementations. Morgan Kaufmann: San Francisco, p: 664.
Zanter, K. 2015. Landsat8 (L8) data user’s handbook. Department of the Interior U.S. Geological.
Zarco-Tejada P.J., Ustin, S.L. 2001. Modeling canopy water content for carbon estimates from MODIS data at land EOS validation sites. Proceedings, IEEE 2001 International Geoscience and Remote Sensing Symposium, 342-344.
Zarco-Tejada, P.J., Rueda, C.A., Ustin, S.L. 2003.  Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment, 85: 109-124.
Zheng, H., Chen, L., Han, X., Zhao, X., Ma, Y. 2009. Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: The importance of phosphorus application rates under drought conditions. Agriculture, Ecosystems & Environment, 132(1-2), 98-105.