ارزیابی برخی توابع انتقال در شبکه‌های عصبی مصنوعی جهت پیش‌بینی کوتاه‌مدت دمای کمینه (مطالعه موردی: ایستگاه همدیدی سنندج)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای اقلیم‌شناسی، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استاد اقلیم‌شناسی، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 استادیار اقلیم‌شناسی، دانشکده جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

4 استادیار آمار، گروه آمار، دانشکده ریاضی، آمار و علوم کامپیوتر، دانشگاه سیستان و بلوچستان، زاهدان، ایران

10.22125/agmj.2020.191817.1066

چکیده

پیش‌بینی کوتاه‌مدت دمای کمینه به منظور تعدیل اثرات سوء ناشی از سرمازدگی و یخبندان در بخش کشاورزی از اهمیت زیادی برخوردار است. در این پژوهش ابتدا فراوانی وقوع یخبندان‌های زودرس پاییزه و دیررس بهاره در ایستگاه همدیدی سنندج طی دوره آماری موجود استخراج شد. سپس با استفاده از داده‌های سینوپ شش متغیرِ دمای خشک، دمای تر، رطوبت نسبی، سرعت باد، جهت باد و پوشش ابر به عنوان ورودی‌های یک مدل شبکه عصبی از نوع پرسپترون چند لایه مبتنی بر الگوریتم یادگیری لونبرگ - مارکوآرت، میزان دمای کمینه در 3، 6، 9 و12 ساعت آتی پیش‌بینی گردید. به این منظور از توابع توابع انتقال موجود در نرم‌افزار MATLAB  شامل hardlims، logsig، poslin، radbas، satlins، satlin، softmax، tansig و tribas استفاده شد. جهت مقایسه و ارزیابی مدل‌ها، از سنجه‌های آماری MAD، MSD، RMSD و R استفاده شد. نتایج نشان داد، توابع logsig، tansig، poslin و satlin در ماه آوریل به ترتیب با مقدار خطای 17/1، 61/1، 88/1 و 00/2 (C) و ضریب همبستگی بیش از 8/0 و توابع radbas، poslin، poslin و tribas در ماه اکتبر با مقدار خطای 60/1، 96/1، 99/1 و 36/1 درجه سلسیوس و ضریب همبستگی بالای 7/0 جهت پیش‌بینی دمای کمینه در ساعات 21:30، 00:30، 03:30 و 06:30 محلی، بیش‌ترین دقت و کارایی را دارند. همچنین در بین توابع مورد بررسی، تابع poslin با بیش‌ترین فراوانی دارای بهترین عملکرد در پیش‌بینی یخبندان‌های شبانه در سنندج می‌باشد. نتایج حاصل بیان‌گر کارآیی و دقت بالای شبکه عصبی مصنوعی در پیش‌بینی کوتاه‌مدت دمای کمینه در منطقه مورد مطالعه می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of selected transfer functions of artificial neural network model for prediction of minimum temperature (Case Study: Sanandaj Station)

نویسندگان [English]

  • E. Mesgari 1
  • T. Tavousi 2
  • P. Mahmoudi 3
  • S. M. A Jahanshahi 4
1 Ph. D. Student of Climatology, Department of Physical Geography, Geography and Regional Planning Faculty, University of Sistan and Baluchestan, Zahedan, Iran
2 Professor in Climatology, Department of Physical Geography, Geography and Regional Planning Faculty, University of Sistan and Baluchestan, Zahedan, Iran
3 Assistant Professor in Climatology Department of Physical Geography, Geography and Regional Planning Faculty, University of Sistan and Baluchestan, Zahedan, Iran
4 Assistant Professor in Statistics, Department of Statistics, Faculty of Mathematics, Statistics and Computer Science, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Short-term prediction of minimum temperature is important in mitigation chilling and frost injury in agriculture. In current study, the frequency of early autumn and late spring frosts in Sanandaj synoptic station, Iran were worked out. Then, using six variables, i.e. dry and wet bulb temperature, relative humidity, wind speed, wind direction, and cloud cover as the inputs, a multilayer perceptron artificial neural network model (MPL/ANN) based on the Levenberg-Marquardt training algorithm of MATLAB software package was applied for prediction of the minimum temperature for the next 3, 6, 9 and 12 hours ahead. The selected Transfer Functions were hardlims, logsig, polsin, radbas, satlins, softmax, tansig, and tribas. The statistical measures of MAD, MSD, RMSD, and R were used for comparisons. The results showed that in case of late spring frost, the poslin, logsig, tansig, and satlin functions in April with a correlation coefficient greater than 0.8 and error values of 1.17, 1.61, 1.88 and 2.00 (C) for the different times steps, respectively are the best options. Similarly, in October, the radbas, poslin, poslin, and tribas functions with a correlation more than 0.7 and error values of 1.60, 1.96, 1.99, and 1.36, were found to be the most suitable ones for prediction of the minimum temperature at 21:30, 00:30, 03:30 and 06:30 local time. Also, among the selected functions, the poslin with the highest frequency has the best performance in predicting nocturnal frosts in Sanandaj. The results confirmed the good performance of the ANN approach in short-term prediction of minimum temperature and frost occurrence in study region.

کلیدواژه‌ها [English]

  • Transfer functions
  • Multilayer Perceptron
  • prediction
  • Sanandaj
  • Minimum temperature
Campolo, M., Soldati, A., Andreussi, P. 1999. Forecasting river flow rate during low–flow periods using neural networks. Water resources research, 35(11): 3547–3552.
Chelani, A. B., Rao, C. C., Phadke, K. M., Hasan, M. Z. 2002. Prediction of sulphur dioxide concentration using artificial neural networks. Environmental Modelling and Software, 17(2): 159–166.
Conrads, P. A., Roehle, E. A. 1999. Comparing Physics- Based and Neural Network Mo Simulating Salinity, Temperature and Dissolved in a Complex, Tidally Affected River Basin. Proceeding of the South Carolina Environnemental Conférence, 1–15.
Cross, S. S., Harrison, R. F., Kennedy, R. L. 1995, Introduction to neural networks. Lancet, 346: 1075–9.
Figuerola, P.I., Mazzeo, N. A. 1997. An analytical model for the prediction of nocturnal and dawn surface temperatures under calm, clear sky conditions. Agricultural and forest meteorology, 85(3–4): 229–237.
Fulop, I. A., Jozsa, J., Karamer, T. 1998. A neural network application in estimating wind induced shallow lake motion. Hydro Informatics, 98(2): 753–757.
Ghielmi, L., Eccel, E. 2006. Descriptive models and artificial neural networks for spring frost prediction  in an  agricultural  mountain   area. Computers and electronics in agriculture, 54(2): 101–114.
Hagan, M. T., Dcmuth, H. B., Bale, M. 2014. Neural Network Design (Translate by Seyed Mostafa Kia),   Kian   Publication   of Rayaneh        Sabz, Tehran, 543. (in Farsi)
Hayati, M., Mohebi, Z. 2007. Application of artificial neural networks for temperature forecasting. World Academy of Science, Engineering and Technology, 28(2): 275–279.
Hernandez, G., Müller, G. V., Villacampa, Y., Navarro-Gonzalez, F. J., Aragonés, L. 2020. Predictive models of minimum temperatures for the south of Buenos Aires province. Science of The Total Environment, 699: 134280.
Hosseini, A., Mesgari, E., SalariFanodi M. R. 2016. Artificial Neural Networks in Climatology. AzarKelk, Zanjan, 146. (in Farsi)
Houshyar, M., Hosseini, A., Mesgari, E. 2012. Modeling of Oroomieh Township Minimum Temperatures through Linear and Nonlinear Multiple Regression and Artificial Neural Networks Models. Geographic Thought, 6(12): 1–33. (in Farsi)
Hsu, K. L., Gupta, H. V., Sorooshian, S. 1995. Artificial neural network modeling of the rainfall-runoff process, Water resources research, 31(10): 2517–2530.
Jain, A., McClendon, R. W., Hoogenboom, G. 2003. Frost prediction using artificial neural networks: a temperature prediction approach. ASAE Paper no. 033075, ASAE, St. Joseph, MI.
Jamei, J., Mesgari, E., Asheri, E. 2015. Predicting Late Spring Frost in the Zab Catchment Using Multilayer Perceptron (MLP) Model. Journal of Geography and Regional Development, 12(23):157–174. (in Farsi)
Khorshiddoost, A. M., Mohammadpour, K., Hosseini, S. A. 2020. Comparison of Logit and       Artificial Neural Network Models in Prediction of Asthma Admissions Related to Climatic Parameters in Sanandaj City. Journal of Geography and Planning, 24(71): 45-66.
Maier, H. R., Dandy, G. C. 1996. The use of artificial neural networks for the prediction of water quality parameters. Water resources research, 32(4): 1013–1022.
Maier, H. R., Dandy, G. C. 1999. Empirical comparison of various methods for training feed–Forward neural networks for salinity forecasting. Water Resources Research, 35(8): 2591–2596.
Maqsood, I., Khan, M. R., Abraham, A. 2004. An ensemble of neural networks for weather forecasting. Neural Computing and Applications, 13(2):112–122.
Mesgari, E., Asheri, E., Hooshyar, M., Hemmesy, M. S. 2015. Rainfall Modeling and Forecasting using Neural Networks: A Case Study of Zab Watershed.‏ International Bulletin of Water Resources and Development, 3(2), S.N(10).
Mesgari, E., Tavousi, T., Mahmoudi, P. 2020. Modelling Topo-Climatology and Zoning Frost Statistical Indices in Kurdistan Province. Geography and Planning, 24(72), 357–383. (in Farsi)
Robinson, C., Mort, N. 1997. A neural network system for the protection of citrus crops from frost damage. Computers and Electronics in Agriculture, 16(3): 177–187.
Rogers, L. L., Dowla, F. U. 1994. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resources Research, 30(2): 457–481.
Shamseldin, A. Y. 1997. Application   of   a   neural      network technique to rainfall-runoff modelling. Journal of hydrology, 199(3–4): 272–294.
Shank, D. 2006. Dew point temperature prediction using artificial neural networks. M.S. thesis, Artificial Intelligence Center, University of Georgia, Athens, GA.
Shank, D. B., Hoogenboom, G., McClendon, R. W. 2008. Dewpoint temperature prediction using artificial neural networks. Journal of applied meteorology and climatology, 47(6): 1757–1769.
Shiravand, H., Hosseini, S. A., Masoudi, H. 2017. Modeling of precipitation prediction in Tehran using Multilayer Perceptron Model (MLP). First International Conference on Numerical Forecasting, Climate Meteorological Organization, Tehran, Iran. 10 p
Smith, B. A., McClendon, R. W., Hoogenboom, G. 2006. Improving air temperature prediction with artificial neural networks. International Journal of Computational Intelligence, 3(3): 179–186.
Solaimani, K. 2009. Rainfall-runoff prediction based on artificial neural network (a case study: Jarahi watershed). American-Eurasian Journal of Agricultural and Environmental Science, 5(6): 856–865.
Zealand, C. M., Burn, D. H., Simonovic, S. P. 1999. Short term streamflow forecasting using artificial neural networks. Journal of hydrology, 214(1–4): 32–48.
Zolfaghari, H., Zahedi, G., Sajjadifar, T. 2012. Predicting Last Spring Freezing Day in West and Northwest of Iran. Geography and Sustainability of Environment, 2(4): 59–74. (in Farsi)