پهنه‌بندی مکانی تبخیر از تشت و برخی عوامل اقلیمی مؤثر بر آن با روش‌های زمین‌آماری (مطالعه موردی: استان فارس)

نوع مقاله: مقاله پژوهشی

نویسنده

دانشیار بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

چکیده

مطالعه تغییرات زمانی- مکانی تبخیر از تشت و عوامل اقلیمی مؤثر بر آن در مدیریت منابع آب و برآوردهای تبخیر و تعرق اهمیت دارد. در مطالعه حاضر، این تغییرات با داده‌های ایستگاه‌های منتخب استان فارس با چند روش‌ درون‌یابی زمین‌آماری بررسی و دقت روش‌ها با استفاده از شاخص‌های آماری (R2، MRE، RMSE، NRMSE، GMER و GSDER) ارزیابی شد. تغییرات مکانی متغیرهای اقلیمی از مدل‌های گوسی و کروی با دامنه تأثیر حدود 9 تا 35 کیلومتر تبعیت می‌نماید. کریجینگ نقطه‌ای معمولی با مدل کروی نیم‌تغییر‌نما (با شعاع تأثیر 9/8 تا 35 کیلومتر و نسبت اثر قطعه‌ای 09/0 تا 44/36 درصد و با کلاس تغییرپذیری متوسط تا قوی) برای تخمین تبخیر از تشت (ضریب تعیین 74/0) و عوامل بارشی (ضرایب تعیین 57/0 تا 76/0) و روش وزن‌دهی عکس‌فاصله با توان‌های 2 تا 5 برای تخمین عوامل دمایی (ضرایب تعیین 62/0 تا 87/0) و سرعت باد (ضریب تعیین 73/0) مناسب‌ترین روش‌ها بودند. فاصله مناسب برای ایستگاه‌های باران‌سنجی حدود 35 کیلومتر تعیین شد. بخش‌های شمالی به ویژه شمال‌شرق استان نسبت به بخش جنوبی از تبخیر از تشت (235 میلی‌متر) و سرعت باد (>15 متر بر ثانیه) بیش‌تری برخوردارند. بر این اساس، مدیریت بهینه آب و تجدید نظر در الگوهای کشت در مناطق مرکزی و جنوبی استان پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial zoning of pan evaporation and affecting variables using geostatisitc methods (Case study: Fars province)

نویسنده [English]

  • Ali Akbar Moosavi
Associate Professor, Department of Soil Science, College of Agriculture, Shiraz University
چکیده [English]

The study of spatio-temporal variations of pan evaporation is quite important in water resource management and evapotranspiration estimation. In current research, these variations and affecting variables have been exmanied using several geostatisitc methods across Fars province, Iran. The skill of these methods were evaluated by statistical measures including R2, MRE, RMSE, NRMSE, GMER, and GSDER. Spatial variability structure of the studied climatic variables followed the Gaussian and spherical models with influence ranges of 9 to 35 km. The ordinary point kriging with spherical semivariogram model (with influence ranges of 8.9 to 35 km, nugget ratios of 0.09 to 36.44% and variability classes of moderate to strong) was the most suitable method for interpolating of pan evaporation (with R2 of 0.74) and precipitation characteristics (with R2 of 0.57 to 0.76) values. The inverse distance weighting with weighting powers of 2 to 5 was the most suitable method for prediction of temperature (with R2 of 0.62 to 0.87) and wind characteristics (with R2 of 0.73). The optimum distace between the rainguages was determined as 35 km.  In general, the results showed that the northern and especially the northeastern parts of the province had lower temperature (<15 ͦ C) and pan evaporation (235 mm), and higher wind speed (>15 m s-1) in comparison to southern parts. Therfore, precise water resource management and new cropping pattern in these regions of the province may be recommended.

کلیدواژه‌ها [English]

  • Inverse distance weighting
  • Ordinary Kriging
  • Precipitation
  • Temperature
  • wind speed
Armstrong, R. N. 2011. Spatial variability of actual evaporation in a prairie landscap. Ph.D. Desertaion, Department of Geography and Planning, University of Saskatchewan, Saskatoon, Canada.

Armstrong, R. N., Pomeroy, J. W., Martz, L. W. 2018. Spatial variability of mean daily estimates of actual evaporation from remotely sensed imagery and surface reference data. Hydrology and Earth System Sciences, 23(12).

Asakareh, H. 2007. Spatio-temporal variation of precipitation in Iran over the recent decades. Geography and Development, 10:145-164 (in Farsi).

Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., Konopka, A. E. 1994. Field-scale variability of soil properties in central Iowa soils. Soil science society of America journal, 58(5): 1501-1511.

Daneshkar Arasteh, P., Tajrishi, M., Mirlatifi, M., Saghafian, B. 2004. Necessity of revision on free water surface evaporation estimation models in arid areas with regional advection: Chahnimeh Reservoir as a case study. Journal of Agricultural Engineering Research, 5:37-50 (in Farsi).

Goovaerts, P. 2000. Geostatistical approach for incorporation, elevation into spatial interpolation of rainfall. Journal of Hydrology, 228:113-129.

Hatami Bahamanbeigloo, Kh., Khoshhal Dastjerdi, J. 2006. Determining climatic regions of Fars Province using factor analysis. Journal of Geographic Space, 10:135-150 (in Farsi).

Irnak, A., Ranade, P. K. 2008. GIS based estimation of spatial distribution of temperature and evapotranspiration in Nebraska. American Society of Agricultural and Biological Engineers, St. Joseph, Mishigan, USA.

Jahangir, M. R., Jahanpanah, M. 2018. Drought condition severity and zoning based on rainfall anomaly index (RAI) in Fars province. Extention and Development of Watershed Management, 6:35-44 (in Farsi).

Kresic, N. 1997. Hydrogeology and groundwater modeling. Lewis Publishers, Boca Raton, Florida, USA. 457 p.

Mahdavi, M., Chegini Hosseini, E., Mahdian, M. H., Rahimi Bandarabadi, S. 2004. Investigation of using geostatistical methods for estimation of annual precipitation in arid and semiarid regions of southeast Iran. Journal of Natural Resources, 57:211-224 (in Farsi).

Mahdian, M. 2002. Determination of Optimization Interpolation Methods to Estimate Rainfall and Temperature in Arid, Semiarid and Humid Regions (IRAN). Project Report Soil Conservation and Watershed Management Research Institute.

Mahdian, M. H. Rahimi Bandarabady, S., Sokouti, R., Norouzi Banis, Y. 2009. Appraisal of the geostatistical methods to estimate monthly and annual temperature. Journal of Applied Sciences, 9(1);128-134.

Mallants, D., Mohanty, B. P., Jacques, D., Feyen, J. 1996. Spatial variability of hydraulic properties in a multi- layered soil profile. Soil Science, 161:167-181.

Mirmousavi, S. H., Mazidi, A., Khosravi, Y. 2010. The determination of optimum geostatistics method for estimating precipitation distribution using GIS (Case study of Esfahan province). Geographic Space, 10:105-120.

Nalder, J. A., Wein, R. W. 1998. Spatial Interpolation of Climate normal: Test of a New Method, Canadian Boreal Forest. Agricultural and forest meteorology 92(4): 211-225.

Parsamehr, A. H., Mobin, M. H., Khosravani, Z. 2018. Using run theory to analysis of drought severity – duration – return period (Case study: Fars Province). Iranian Journal of Ecohydrology, 5(2): 471-481 (in Farsi).

Saadatkhah, N., Sarang, S. A., Abrishamchi, A., Tajrishi, M. 2001. Estimation of evaporation from Chahnimeh Reservoirs. Journal of Water and Wastewater, 40:1-12.

Shaban, M., Khajeoddin, S. J., Karimzadeh, H. R. 2007. Studying drought resistance in some tree and bushes for remediation of arid and semi arid regions. Iranian Journal of Watershed Management Science and Engineering, 1: 58-63 (in Farsi).

Solaimani, K., Habibnejad, M., Abkar, A., Bani-Asadi, M. 2006. Analysis of depth-area-duration curves of rainfall in semi-arid and arid region using geostatistical methods (Case study: Sirjan). Desert, 1:31-42.

Tobies, G. Q., Salas, J. D. 1985. A comparative analysis of techniques for spatial analysis precipitation. Water Resources Bulltain, 21: 365-380.

Tran, A. P., Rungee, J., Faybishenko, B., Dafflon, B., Hubbard, S. S. 2019. Assessment of spatiotemporal variability of evapotranspiration and its governing factors in a mountainous watershed. Water, 11: 243:2-17.

Webster, R., Oliver, M. 2001. Geostatistics for Environmental Scientists. John Wiley & Sons, England. 271 p.

Wilding, L. P. 1985. Spatial variability: Its documentation, accommodation and implication to soil surveys, pp. 166-194, In: Nielsen, D.R. and Bouma, J. (eds.), Soil Spatial Variability, Pudoc, Wageningen, Netherlands.

Zabihi, A., Solaimani, K., Shabani, M., Abravsh, S. 2012. An investigation of annual rainfall spatial distribution using geostatistical methods (A case study: Qom Province). Physical Geography Quarterly, 43:102-112 (in Farsi).

Zare Abyaneh, H., Moghaddamnia, A. R., Bayat Varkeshi, M., Gasemi, A., Shadmani, M. 2010. Spatial variability of pan evaporation in Iran and its estimation using several empirical models. Water and Soil Science (Agricultural Science. 20(1): 113- 129. (in Farsi)

Zhao, C., Nan, Z., Cheng, G. 2005. Metods for modeling of temporal and spatial distribution of air temperature at landscope scale in the southern Qilian Mountains, China. Ecological modelling, 189: 209-220.

Zheng, H., Yu, G., Wang, Q., Zhu, X., He, H., Wang, Y.,  Zhang, J., Li, Y., Zhao, L., Zhao, F., Shi, P., Wang, H., Yan, J., Zhang, Y. 2019. Spatial variation in annual actual evapotranspiration of terrestrial ecosystems in China: Results from eddy covariance measurements. Journal of Geographical Sciences, 26: 1391-1411.

Zheng, Z., Zhang, D., Chai, M. F., Zhu, X., Shi, Z., Zhang, S. 2009. Spatio-temporal changes in soil salinity in a drip-irrigated field. Geoderma, 149: 243–248.