پایش روزانه تأثیر خشکسالی بر پوشش گیاهی با استفاده از داده‌های بارش شبکه INTERIM و تصاویر سنجنده MODIS (مطالعه موردی: استان کرمانشاه)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد هواشناسی کشاورزی گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

2 دانشیار گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

3 استادیار گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

4 استادیار گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه

5 دانشجوی دکترا هواشناسی کشاورزی گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

چکیده

تأثیر خشکسالی بر پوشش گیاهی را می‌توان از طریق تغییرات طیفی ایجاد شده در تصاویر ماهواره‌ای مورد بررسی قرار داد. هدف از این مطالعه، ارزیابی تأثیر خشکسالی‌های هواشناسی بر پوشش گیاهی مستخرج از تصاویر ماهواره‌ای است. بدین منظور، تصاویر پوشش گیاهی از سنجنده MODIS ماهواره AQUA در مقیاس زمانی 16 روزه در طی فصل رشد و برای سه سال تر (2006)، نرمال (2009) و خشک (2008) در کاربری‌های جنگل، مرتع و کشاورزی استخراج شد. پس از اعمال تصحیحات لازم بر تصاویر ماهواره‌ای شاخص تفاوت پوشش گیاهی نرمال (NDVI) محاسبه شد. سپس، بر مبنای داده‌های تحلیل مجدد بارش روزانه پایگاه INTERIM، مجموع بارش دوره‌های 1 تا 365 روز قبل در دو حالت لحاظ و عدم لحاظ افت زمانی، تأثیر بارش بر پوشش گیاهی محاسبه شد. نتایج نشان می‌دهد همبستگی قوی و معنی‌داری بین تغییرات بارندگی داده‌های INTERIM و نمایه NDVI در سه کاربری وجود دارد. دوره‌های تجمیع دارای بیشینه همبستگی با پوشش گیاهی در محاسبه شاخص خشکسالی مؤثر (EDI) استفاده شد، اما همبستگی بین NDVI و EDI در سه کاربری منتخب، منفی بود، احتمالاً به این دلیل که نمایه EDI، پایش خشکسالی را بر مبنای مقایسه با میانگین و انحراف معیار بلند‌مدت اقلیمی انجام می‌دهد، حال آن که پوشش گیاهی از شرایط بارندگی همان سال تأثیر می‌پذیرد. بر این اساس، شاخص دیگری بر مبنای داده‌های بارش مؤثر (EP) استخراج شد که شاخص بارش مؤثر استاندارد (SEPI) نامیده شد. نتایج مقایسه سری‌های NDVI و SEPI نشان داد که روند تغییرات NDVI و SEPI تقریباً یکسان است.

کلیدواژه‌ها


عنوان مقاله [English]

Daily monitoring of drought effects on vegetation cover using ERA-Interim precipitation data and MODIS Images (Case study: Kermanshah Province)

نویسندگان [English]

  • Parima Zargaran 1
  • Javad Bazrafshan 2
  • Zahra Aghashariatmadary 3
  • Somayeh Hejabi 4
  • Saeedeh Kamali 5
1 M.Sc. Student of Agrometeorology, Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran
2 Associate Professor of Agrometeorology, Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran
3 Assistant Professor of Agrometeorology, Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran
4 Assistant Professor of Agrometeorology, Water Engineering Department, Faculty of Agriculture and natural Resources, Urmia University, Iran
5 Ph.D. Student of Agrometeorology, Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran
چکیده [English]

The purpose of this study is to evaluate the effects of meteorological droughts on vegetation cover using satellite images. For this purpose, vegetation images were extracted from MODIS sensor of AQUA satellite on a 16-days timescale, during the growing season for three years of Wet (2006), Normal (2009) and Dry (2008) for different land uses, i.e. forest, pasture and agriculture in Kermanshah province, Iran. After necessary corrections to the satellite images, the daily Normalized Difference Vegetation Index (NDVI) values were calculated. Then, based on ERA Interim gridded precipitation data, the summed value of precipitation for the dummy durations of 1-365 days before any given date were calculated without and with a time-dependent reduction function representing the effect of precipitation on vegetation. The results showed that there is a strong and significant correlation between Interim rainfall variability and NDVI in three different land uses. The summation durations having maximum correlation with vegetation were used to calculate Effective Drought Index (EDI). It was identified that the maximum correlations between NDVI and EDI had negative values in all three selected land uses. The reason for this may be related to the technique that EDI employs to monitor drought. While vegetation cover is affected by precipitation conditions of the same year, EDI is calculated on the basis of daily precipitation with respect to its long-term average. Accordingly, another index was derived based on effective precipitation (EP) data, which is called Standard Effective Precipitation Index (SEPI). Results of comparison between NDVI and SEPI series showed that both series were similarly changed.

کلیدواژه‌ها [English]

  • Remote Sensing
  • Effective Precipitation
  • effective drought index
  • Vegetation Index
  • Kermanshah
Amini, J. 2010. Computer processing of remotely sensed images. Tehran University press. 576 pages. (In Farsi)
Badescu, V. 2008. Modeling soalr radiation at the earth surface. Springer-Verlag Berlin Heidelberg. 517 pages.
Byun, H., wilhite, D. 1999. Objective quantification of drought severity and duration. Journal of Climate, 12: 2747-2756.
Ghorbani, Kh. 2010. Comparative study of meteorological indexes with satellite data profiles by data mining for drought monitoring. Ph.D. Thesis. University of Tehran, Tehran. (In Farsi)
Jalili, Sh., Morid, S., Ziyaeeyan, F.P. 2008. A Comparison between Satellite and Climatic Indices in Drought Monitoring. Iranian Journal of Soil and Water Research, 39(1): 139-149. (In Farsi)
Katirai Borujerdi, P.S. 2013. Comparison of high-resolution gridded monthly satellite and ground-based precipitation data over Iran. Geophysical Journal of Iran, 7(4): 149-160. (In Farsi)
Kamali, S. 2017. Metrological drought monitoring in the semi-arid region of Kermanshah using multisensory microwave remote sensing data. MSc Thesis. University of Tehran, Tehran. (In Farsi)
Liu, W.T., Kogan, F.N. 1996. Monitoring regional drought using the vegetation condition index. International Journal of Remote Sensing. 17(14): 2761-2782.
Mirmousavi, S.H., Karimi, H. 2011. Effect of Drought on Vegetation Cover Using MODIS Sensing Images Case: Kurdistan Province. Journal of Geography and development, 11(31): 57-76. (In Farsi)
Peters, A., Lei Ji, W., Hayes, M., Svobooda, M., Hayes, M. 2003. Drought monitoring with NDVI based standardized vegetation index. Photogrammetric Engineering and remote sensing, 68(1): 71-75.
Rahimzadeh, P., Darvishsefat, A., Khalili, A., Makhdom, A. 2008. Using AVHRR-based vegetation indices for drought monitoring in the northwest of Iran. Journal of Arid Environment, 72(6): 1086-1096.
Raziei, T., Sotoudeh, F. 2016. Investigation of the   accuracy   of   the   European   Center for Medium Range Weather Forecast (ECMWF) in forecasting observed precipitation in different climates of Iran. Journal of the earth and space physics, 43(1): 1-16. (In Farsi)
Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W. 1974. Monitoring vegetation systems in the great plains with ERTS. NASA. Goddard Space Flight Center 3d ERTS-1 Symposium, 1(A): 309-317.
Sarabi,    S.,    Heshmatpour,    A.,    Komaki, B., Tahmasebi, A. 2015. Relationship between Modis vegetation indices and drought in northern rangeland of Golestan province. Iranian Journal of Range and Desert Research, 22(2): 392-40.
van Hoek, M., Jia, L., Zhou, J., Zheng, Ch., Menenti, M. 2016. Early Drought Detection by Spectral Analysis of Satellite Time Series of Precipitation and Normalized Difference Vegetation Index (NDVI). Remote Sensing, 8(5): 1-17.